AlexeyAB / darknet

YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )
http://pjreddie.com/darknet/
Other
21.77k stars 7.96k forks source link

After adding the spp module in yolo v3-tiny, mAP drops #7527

Open yrc08 opened 3 years ago

yrc08 commented 3 years ago

[net]

Testing

batch=64 subdivisions=64

Training

batch=64

subdivisions=64

width=416 height=416 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1

learning_rate=0.001 burn_in=1000 max_batches = 2000 policy=steps steps=1600,1800 scales=.1,.1

[convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky

[maxpool] size=2 stride=2

[convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky

[maxpool] size=2 stride=2

[convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky

[maxpool] size=2 stride=2

[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky

[maxpool] size=2 stride=2

[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky

[maxpool] size=2 stride=2

[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky

[maxpool] size=2 stride=1

[convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky

###########

[convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky

SPP

[maxpool] stride=1 size=5

[route] layers=-2

[maxpool] stride=1 size=9

[route] layers=-4

[maxpool] stride=1 size=13

[route] layers=-1,-3,-5,-6

End SPP

[convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky

[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky

[convolutional] size=1 stride=1 pad=1 filters=18 activation=linear

[yolo] mask = 3,4,5 anchors = 17, 19, 48, 23, 34, 67, 99, 48, 112,119, 252,215 classes=1 num=6 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1

[route] layers = -4

[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky

[upsample] stride=2

[route] layers = -1, 8

[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky

[convolutional] size=1 stride=1 pad=1 filters=18 activation=linear

[yolo] mask = 0,1,2 anchors = 17, 19, 48, 23, 34, 67, 99, 48, 112,119, 252,215 classes=1 num=6 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 spp 无spp The former does not add the spp module, the latter adds the spp module @AlexeyAB Looking forward to your reply

yrc08 commented 3 years ago

@AlexeyAB The former add the spp module, the latter does not adds the spp module. I want to know if the spp module is added in the wrong position