Closed maulikmadhavi closed 1 year ago
read this issue for better examples: https://github.com/Alibaba-MIIL/ImageNet21K/issues/40
something like this should work better: python -m torch.distributed.launch --nproc_per_node=8 --master_port 6016 train.py \ /data/cifar-100-images/ \ -b=64 \ --img-size=224 \ --epochs=50 \ --color-jitter=0 \ --amp \ --lr=2e-4 \ --sched='cosine' \ --model-ema --model-ema-decay=0.995 --reprob=0.5 --smoothing=0.1 \ --min-lr=1e-8 --warmup-epochs=3 --train-interpolation=bilinear --aa=v0 \ --model=vit_base_patch16_224_miil_in21k \ --pretrained \ --num-classes=100 \ --opt=adamw --weight-decay=1e-4 \ --checkpoint-hist=1 --batch_size=128 --optimizer=sgd --learning_rate=1e-2 --wd=1e-4
play a bit with the learning rate vs batch size optimization
Thanks! The above hyperparameters gave a validation accuracy of 87.89% which is even worse
*** Best metric: 87.89 (epoch 30)
Similar Issues:
Hi Tal Ridnik, Thanks for sharing nice work, I am trying to reproduce the finetuning result using timm. My accuracy is 89.25 which is lesser than reported in paper (i.e., 91.5).
Do you have any suggestion to follow? Thanks, Maulik!