Open Xiaojieqiu opened 5 years ago
Thanks for the feedback. It seems that the error was raised by a wrong input shape. Can you send us the part of the tested data (RNA-seq data and batch index data) so we can replicate this error for debug. Please send to fbao0110@gmail.com
Best, Feng
Goodmorning, thanks for your work. I have the same problem. How can i fix it?
latent1, imputedval, = DeepImpute.predict(adata_test.X, DI_model1, batch_effect=batch_id_t)
ValueError Traceback (most recent call last)
Goodmorning, thanks for your work. I have the same problem. How can i fix it?
latent1, imputedval, = DeepImpute.predict(adata_test.X, DI_model1, batch_effect=batch_id_t)
ValueError Traceback (most recent call last) in ----> 1 latent1, imputedval, = DeepImpute.predict(adata_test.X, DI_model1, batch_effect=batch_id_t) 2 latent2, imputedval, = DeepImpute.predict(adata_test.X, DI_model2, batch_effect=batch_id_t) 3 latent3, imputedval, = DeepImpute.predict(adata_test.X, DI_model3, batch_effect=batch_id_t) 4 latent4, imputedval, = DeepImpute.predict(adata_test.X, DI_model4, batch_effect=batch_id_t) 5 latent5, imputedval, = DeepImpute.predict(adata_test.X, DI_model5, batch_effect=batch_id_t)
c:\users\federico\anaconda3\envs\dca\lib\site-packages\scscopeinit.py in predict(test_data, model, batch_effect) 265 266 latent_code_val, output_val, predicted_batch_effect = sess.run([latent_code[i], output[i], removed_batch_effect], feed_dict={ --> 267 test_data_holder: test_data, test_exp_batch_idx_holder: batch_effect_idx}) 268 if i == 0: 269 latent_fea = latent_code_val
c:\users\federico\anaconda3\envs\dca\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata) 927 try: 928 result = self._run(None, fetches, feed_dict, options_ptr, --> 929 run_metadata_ptr) 930 if run_metadata: 931 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
c:\users\federico\anaconda3\envs\dca\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata) 1126 'which has shape %r' % 1127 (np_val.shape, subfeed_t.name, -> 1128 str(subfeed_t.get_shape()))) 1129 if not self.graph.is_feedable(subfeed_t): 1130 raise ValueError('Tensor %s may not be fed.' % subfeed_t)
ValueError: Cannot feed value of shape (1979, 2000) for Tensor 'Placeholder_2:0', which has shape '(?, 10058)
Thank you for reporting this bug. We are woking on this problem. Could please provide a test dataset for validation? Really appreciate your help!
Thanks for this nice work! I find there may be a bug when we run predict function with a model trained with the one-hot matrix:
The following include some running information (interestingly, the reconstruction error increases in my case) and the error message .