Closed chenghlee closed 2 years ago
=========================== short test summary info =========================== FAILED cluster/tests/test_spectral.py::test_precomputed_nearest_neighbors_filtering FAILED manifold/tests/test_spectral_embedding.py::test_precomputed_nearest_neighbors_filtering FAILED tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_supervised_y_2d] FAILED tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit_idempotent] FAILED tests/test_common.py::test_estimators[Nystroem()-check_fit_idempotent] FAILED tests/test_common.py::test_estimators[SpectralEmbedding()-check_pipeline_consistency] = 6 failed, 17941 passed, 996 skipped, 28 xfailed, 24 xpassed, 3047 warnings in 1083.37s (0:18:03) = ================================== FAILURES =================================== ________________ test_precomputed_nearest_neighbors_filtering _________________ [gw0] win32 -- Python 3.9.2 %PREFIX%\python.exe def test_precomputed_nearest_neighbors_filtering(): ### ... snip ... ### > assert_array_equal(results[0], results[1]) E AssertionError: E Arrays are not equal E E Mismatched elements: 47 / 200 (23.5%) E Max absolute difference: 1 E Max relative difference: 1. E x: array([1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, E 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,... E y: array([0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, E 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, E 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,... ..\_test_env\lib\site-packages\sklearn\cluster\tests\test_spectral.py:123: AssertionError ________________ test_precomputed_nearest_neighbors_filtering _________________ [gw0] win32 -- Python 3.9.2 %PREFIX%\python.exe def test_precomputed_nearest_neighbors_filtering(): ### ...snip... ### > assert_array_equal(results[0], results[1]) E AssertionError: E Arrays are not equal E E Mismatched elements: 2000 / 2000 (100%) E Max absolute difference: 0.202388 E Max relative difference: 107.51598505 E x: array([[-0.006769, -0.007541], E [-0.01462 , -0.037366], E [-0.025658, -0.009109],... E y: array([[ 0.011987, -0.030262], E [-0.010395, 0.032586], E [ 0.036888, -0.033157],... ..\_test_env\lib\site-packages\sklearn\manifold\tests\test_spectral_embedding.py:155: AssertionError ______ test_estimators[GaussianProcessRegressor()-check_supervised_y_2d] ______ [gw0] win32 -- Python 3.9.2 %PREFIX%\python.exe estimator = GaussianProcessRegressor() check = functools.partial(<function check_supervised_y_2d at 0x06932340>, 'GaussianProcessRegressor') request = <FixtureRequest for <Function test_estimators[GaussianProcessRegressor()-check_supervised_y_2d]>> @parametrize_with_checks(list(_tested_estimators())) def test_estimators(estimator, check, request): # Common tests for estimator instances with ignore_warnings(category=(FutureWarning, ConvergenceWarning, UserWarning, FutureWarning)): _set_checking_parameters(estimator) > check(estimator) ..\_test_env\lib\site-packages\sklearn\tests\test_common.py:93: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ..\_test_env\lib\site-packages\sklearn\utils\_testing.py:308: in wrapper return fn(*args, **kwargs) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ name = 'GaussianProcessRegressor', estimator_orig = GaussianProcessRegressor() @ignore_warnings(category=FutureWarning) def check_supervised_y_2d(name, estimator_orig): ### ...snip... ### > assert_allclose(y_pred.ravel(), y_pred_2d.ravel()) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 10 / 30 (33.3%) E Max absolute difference: 3.51023877e-10 E Max relative difference: 0.00033019 E x: array([-1.455964e-05, 1.000040e+00, 2.000001e+00, 1.030063e-05, E 1.000001e+00, 2.000004e+00, 1.870067e-07, 9.999929e-01, E 2.000001e+00, -2.525699e-06, 1.000002e+00, 2.000025e+00,... E y: array([-1.455970e-05, 1.000040e+00, 2.000001e+00, 1.030057e-05, E 1.000001e+00, 2.000004e+00, 1.869463e-07, 9.999929e-01, E 2.000001e+00, -2.525771e-06, 1.000002e+00, 2.000025e+00,... ..\_test_env\lib\site-packages\sklearn\utils\estimator_checks.py:2184: AssertionError ______ test_estimators[GaussianProcessRegressor()-check_fit_idempotent] _______ [gw0] win32 -- Python 3.9.2 %PREFIX%\python.exe estimator = GaussianProcessRegressor() check = functools.partial(<function check_fit_idempotent at 0x0692A070>, 'GaussianProcessRegressor') request = <FixtureRequest for <Function test_estimators[GaussianProcessRegressor()-check_fit_idempotent]>> @parametrize_with_checks(list(_tested_estimators())) def test_estimators(estimator, check, request): # Common tests for estimator instances with ignore_warnings(category=(FutureWarning, ConvergenceWarning, UserWarning, FutureWarning)): _set_checking_parameters(estimator) > check(estimator) ..\_test_env\lib\site-packages\sklearn\tests\test_common.py:93: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ..\_test_env\lib\site-packages\sklearn\utils\estimator_checks.py:3031: in check_fit_idempotent assert_allclose_dense_sparse( _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ x = array([-5.99002466e+00, -1.10709372e+00, 9.46448649e-01, -2.46598440e+00, 3.73609516e+00, -4.17400605e+01, -7...5208e+00, -4.58927614e+02, 3.76215227e+02, 4.83375571e-01, 7.75619447e+00, -4.39485206e+00, -2.42046605e+00]) y = array([-5.99002008e+00, -1.10709393e+00, 9.46448479e-01, -2.46598012e+00, 3.73608357e+00, -4.17399150e+01, -7...4839e+00, -4.58927694e+02, 3.76214846e+02, 4.83375105e-01, 7.75618923e+00, -4.39485343e+00, -2.42046461e+00]) rtol = 1e-07, atol = 1e-09 err_msg = 'Idempotency check failed for method predict' def assert_allclose_dense_sparse(x, y, rtol=1e-07, atol=1e-9, err_msg=''): ### ...snip... ### > assert_allclose(x, y, rtol=rtol, atol=atol, err_msg=err_msg) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-09 E Idempotency check failed for method predict E Mismatched elements: 20 / 20 (100%) E Max absolute difference: 0.00072748 E Max relative difference: 3.48470055e-06 E x: array([-5.990025e+00, -1.107094e+00, 9.464486e-01, -2.465984e+00, E 3.736095e+00, -4.174006e+01, -7.626134e+02, 2.480707e+00, E -1.449927e+03, -1.408592e+00, 2.477522e+00, -6.230015e+00,... E y: array([-5.990020e+00, -1.107094e+00, 9.464485e-01, -2.465980e+00, E 3.736084e+00, -4.173992e+01, -7.626135e+02, 2.480703e+00, E -1.449926e+03, -1.408593e+00, 2.477524e+00, -6.230021e+00,... ..\_test_env\lib\site-packages\sklearn\utils\_testing.py:415: AssertionError ______________ test_estimators[Nystroem()-check_fit_idempotent] _______________ [gw0] win32 -- Python 3.9.2 %PREFIX%\python.exe estimator = Nystroem() check = functools.partial(<function check_fit_idempotent at 0x0692A070>, 'Nystroem') request = <FixtureRequest for <Function test_estimators[Nystroem()-check_fit_idempotent]>> @parametrize_with_checks(list(_tested_estimators())) def test_estimators(estimator, check, request): # Common tests for estimator instances with ignore_warnings(category=(FutureWarning, ConvergenceWarning, UserWarning, FutureWarning)): _set_checking_parameters(estimator) > check(estimator) ..\_test_env\lib\site-packages\sklearn\tests\test_common.py:93: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ..\_test_env\lib\site-packages\sklearn\utils\estimator_checks.py:3031: in check_fit_idempotent assert_allclose_dense_sparse( _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ x = array([[ 1.97641385e-01, 9.61580107e-05, 3.36263817e-01, ..., 2.12565982e-01, 3.22560841e-02, 1.32599218e... [ 6.55313722e-02, -3.43879184e-04, 2.22385697e-02, ..., 6.38597798e-03, 5.60496364e-01, 1.01087809e-02]]) y = array([[ 1.97641385e-01, 9.61580106e-05, 3.36263817e-01, ..., 2.12565982e-01, 3.22560841e-02, 1.32599218e... [ 6.55313724e-02, -3.43879238e-04, 2.22385701e-02, ..., 6.38597857e-03, 5.60496364e-01, 1.01087809e-02]]) rtol = 1e-07, atol = 1e-09 err_msg = 'Idempotency check failed for method transform' def assert_allclose_dense_sparse(x, y, rtol=1e-07, atol=1e-9, err_msg=''): ### ...snip... ### > assert_allclose(x, y, rtol=rtol, atol=atol, err_msg=err_msg) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-09 E Idempotency check failed for method transform E Mismatched elements: 338 / 1600 (21.1%) E Max absolute difference: 2.3087952e-06 E Max relative difference: 0.00080639 E x: array([[ 1.976414e-01, 9.615801e-05, 3.362638e-01, ..., 2.125660e-01, E 3.225608e-02, 1.325992e-01], E [ 3.464009e-03, 5.946941e-03, 1.600314e-03, ..., 7.684868e-04,... E y: array([[ 1.976414e-01, 9.615801e-05, 3.362638e-01, ..., 2.125660e-01, E 3.225608e-02, 1.325992e-01], E [ 3.464004e-03, 5.946940e-03, 1.600314e-03, ..., 7.684816e-04,... ..\_test_env\lib\site-packages\sklearn\utils\_testing.py:415: AssertionError _______ test_estimators[SpectralEmbedding()-check_pipeline_consistency] _______ [gw0] win32 -- Python 3.9.2 %PREFIX%\python.exe estimator = SpectralEmbedding() check = functools.partial(<function check_pipeline_consistency at 0x06925898>, 'SpectralEmbedding') request = <FixtureRequest for <Function test_estimators[SpectralEmbedding()-check_pipeline_consistency]>> @parametrize_with_checks(list(_tested_estimators())) def test_estimators(estimator, check, request): # Common tests for estimator instances with ignore_warnings(category=(FutureWarning, ConvergenceWarning, UserWarning, FutureWarning)): _set_checking_parameters(estimator) > check(estimator) ..\_test_env\lib\site-packages\sklearn\tests\test_common.py:93: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ..\_test_env\lib\site-packages\sklearn\utils\_testing.py:308: in wrapper return fn(*args, **kwargs) ..\_test_env\lib\site-packages\sklearn\utils\estimator_checks.py:1406: in check_pipeline_consistency assert_allclose_dense_sparse(result, result_pipe) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ x = array([[ 0.08333619, 0.16885926], [ 0.16642444, -0.07159973], [ 0.16642444, -0.07159973], [-0.02...-0.07159973], [ 0.08333619, 0.16885926], [ 0.08333619, 0.16885926], [ 0.16642444, -0.07159973]]) y = array([[ 9.53543159e-02, 3.00838180e-15], [ 1.60809881e-01, -9.43588019e-02], [ 1.60809881e-01, 2.6359....53543159e-02, 2.21466217e-16], [ 9.53543159e-02, -6.94851237e-16], [ 1.60809881e-01, -2.12784505e-01]]) rtol = 1e-07, atol = 1e-09, err_msg = '' def assert_allclose_dense_sparse(x, y, rtol=1e-07, atol=1e-9, err_msg=''): ### ...snip... ### > assert_allclose(x, y, rtol=rtol, atol=atol, err_msg=err_msg) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-09 E E Mismatched elements: 60 / 60 (100%) E Max absolute difference: 0.35748972 E Max relative difference: 1.75526823e+16 E x: array([[ 0.083336, 0.168859], E [ 0.166424, -0.0716 ], E [ 0.166424, -0.0716 ],... E y: array([[ 9.535432e-02, 3.008382e-15], E [ 1.608099e-01, -9.435880e-02], E [ 1.608099e-01, 2.635916e-01],... ..\_test_env\lib\site-packages\sklearn\utils\_testing.py:415: AssertionError
win-32 support has been dropped.