Closed TxT1212 closed 11 months ago
your input image has 689280 float numbers, -1 means any integer, 689280 / 360 / 640 / 3 != integer.
so please check the image integrity firstly, maybe has incomplete image(s).
of course, maybe other cause.
Or maybe you have images with different resolutions in your dataset which is not supported yet.
How to solve it?I also faced similar problem on dtu dataset
How to solve it?I also faced similar problem on dtu dataset
My dataset has slightly different image size because I use colmap to undistort images. Some of images are 640x360 and others are 640x359
resize pls. (PIL.Image, CV2, or pytorch torchvision.transorms.Resize)
here is my error message, I have no clue what's wrong.
python train.py -s /home/ezxr/data/mapper_sanxdxgcjcs_002617 -c /home/ezxr/data/mapper_sanxdxgcjcs_002617/gaussain_model/ -r density Will export a UV-textured mesh as an .obj file. Changing sh_levels to match the loaded model: 4 -----Parsed parameters----- Source path: /home/ezxr/data/mapper_sanxdxgcjcs_002617
Loading config /home/ezxr/data/mapper_sanxdxgcjcs_002617/gaussain_model/... Performing train/eval split... Loading camera 21907/1695894918480.jpeg Loading camera 21907/1695894919015.jpeg Loading camera 21907/1695894919681.jpeg Loading camera 21907/1695894920349.jpeg Loading camera 21907/1695894921016.jpeg Loading camera 21907/1695894922349.jpeg Loading camera 21907/1695894923682.jpeg Loading camera 21907/1695894924349.jpeg Loading camera 21907/1695894925016.jpeg Loading camera 21907/1695894925682.jpeg Loading camera 21907/1695894926349.jpeg Loading camera 21907/1695894927016.jpeg Loading camera 21907/1695894927684.jpeg Loading camera 21907/1695894928350.jpeg Loading camera 21907/1695894929016.jpeg Loading camera 21907/1695894929684.jpeg Loading camera 21907/1695894930349.jpeg Loading camera 21907/1695894931016.jpeg Loading camera 21907/1695894931684.jpeg Loading camera 21907/1695894932350.jpeg Loading camera 21907/1695894933016.jpeg Loading camera 21907/1695894933684.jpeg Loading camera 21907/1695894934350.jpeg Loading camera 21907/1695894935017.jpeg Loading camera 21907/1695894935684.jpeg Loading camera 21907/1695894937016.jpeg Loading camera 21907/1695894937684.jpeg Loading camera 21907/1695894938350.jpeg Loading camera 21907/1695894939016.jpeg Loading camera 21907/1695894939684.jpeg Loading camera 21907/1695894940350.jpeg Loading camera 21907/1695894941017.jpeg Loading camera 21907/1695894941687.jpeg Loading camera 21907/1695894942351.jpeg Loading camera 21907/1695894943017.jpeg Loading camera 21907/1695894943684.jpeg Loading camera 21907/1695894944351.jpeg Loading camera 21907/1695894945018.jpeg Loading camera 21907/1695894945686.jpeg Loading camera 21907/1695894946351.jpeg Loading camera 21907/1695894947018.jpeg Loading camera 21907/1695894947686.jpeg Loading camera 21907/1695894948351.jpeg Loading camera 21907/1695894949018.jpeg Loading camera 21907/1695894949686.jpeg Loading camera 21907/1695894950350.jpeg Loading camera 21907/1695894951018.jpeg Loading camera 21907/1695894951686.jpeg Loading camera 21907/1695894952351.jpeg Loading camera 21907/1695894953019.jpeg Loading camera 21907/1695894953686.jpeg Loading camera 21907/1695894954351.jpeg Loading camera 21907/1695894955018.jpeg Loading camera 21907/1695894955685.jpeg Loading camera 21907/1695894956352.jpeg Loading camera 21907/1695894957019.jpeg Loading camera 21907/1695894957687.jpeg Loading camera 21907/1695894958352.jpeg Loading camera 21907/1695894959019.jpeg Loading camera 21907/1695894959687.jpeg Loading camera 21907/1695894960352.jpeg Loading camera 21907/1695894961019.jpeg Loading camera 21907/1695894961687.jpeg Loading camera 21907/1695894962352.jpeg Loading camera 21907/1695894963019.jpeg Loading camera 21907/1695894963714.jpeg Loading camera 21907/1695894964352.jpeg Loading camera 21907/1695894965019.jpeg Loading camera 21907/1695894965687.jpeg Loading camera 21907/1695894966352.jpeg Loading camera 21907/1695894967019.jpeg Loading camera 21907/1695894967687.jpeg Loading camera 21907/1695894968352.jpeg Loading camera 21907/1695894969019.jpeg Loading camera 21907/1695894969687.jpeg Loading camera 21907/1695894970353.jpeg Loading camera 21907/1695894971020.jpeg Loading camera 21907/1695894971687.jpeg Loading camera 21907/1695894972353.jpeg Loading camera 21907/1695894973020.jpeg Loading camera 21907/1695894973687.jpeg Loading camera 21907/1695894974352.jpeg Loading camera 21907/1695894975020.jpeg Loading camera 21907/1695894975687.jpeg Loading camera 21907/1695894976353.jpeg Loading camera 21907/1695894977022.jpeg Loading camera 21907/1695894977687.jpeg Loading camera 21907/1695894978353.jpeg Loading camera 21907/1695894979020.jpeg Loading camera 21907/1695894979687.jpeg Loading camera 21907/1695894980354.jpeg Loading camera 21907/1695894981020.jpeg Loading camera 21907/1695894981690.jpeg Loading camera 21907/1695894982353.jpeg Loading camera 21907/1695894983020.jpeg Loading camera 21907/1695894983688.jpeg Loading camera 21907/1695894984354.jpeg Loading camera 21907/1695894985020.jpeg Loading camera 21907/1695894985689.jpeg Loading camera 21907/1695894986357.jpeg Loading camera 21907/1695894987020.jpeg Loading camera 21907/1695894987689.jpeg Loading camera 21907/1695894988353.jpeg Loading camera 21907/1695894989020.jpeg Loading camera 21907/1695894989687.jpeg Loading camera 21907/1695894990353.jpeg Loading camera 21907/1695894991021.jpeg 93 training images detected. The model has been trained for 7000 steps.
Camera resolution scaled to 360 x 640 Initializing model from trained 3DGS... Point cloud generated. Number of points: 252966 Use min to initialize scales. Initialized radiuses for 3D Gauss Rasterizer Initializing 3D gaussians from 3D gaussians...
SuGaR model has been initialized. SuGaR() Number of parameters: 14924994 Checkpoints will be saved in ./output/coarse/mapper_sanxdxgcjcs_002617/sugarcoarse_3Dgs7000_densityestim02_sdfnorm02/
Model parameters: _points torch.Size([252966, 3]) True all_densities torch.Size([252966, 1]) True _scales torch.Size([252966, 3]) True _quaternions torch.Size([252966, 4]) True _sh_coordinates_dc torch.Size([252966, 1, 3]) True _sh_coordinates_rest torch.Size([252966, 15, 3]) True Using camera spatial extent as spatial_lr_scale: 7.771456003189088 Optimizer initialized. Optimization parameters: OptimizationParams( iterations=15000, position_lr_init=0.00016, position_lr_final=1.6e-06, position_lr_delay_mult=0.01, position_lr_max_steps=30000, feature_lr=0.0025, opacity_lr=0.05, scaling_lr=0.005, rotation_lr=0.001, ) Optimizable parameters: points 0.001243432960510254 sh_coordinates_dc 0.0025 sh_coordinates_rest 0.000125 all_densities 0.05 scales 0.005 quaternions 0.001 Densifier initialized. Using loss function: l1+dssim Starting regularization...
Iteration: 7000 loss: 0.030430 [ 7000/15000] computed in 0.0077037890752156574 minutes. ------Stats----- ---Min, Max, Mean, Std Points: -36.427547454833984 25.382139205932617 0.1579069197177887 4.527556419372559 Scaling factors: 1.8439502014189202e-07 0.9512976408004761 0.032854754477739334 0.05896857753396034 Quaternions: -0.9968045353889465 0.9999953508377075 0.22015613317489624 0.4489225745201111 Sh coordinates dc: -2.2877933979034424 4.295931339263916 -0.06274425983428955 1.2825195789337158 Sh coordinates rest: -0.7043451070785522 0.6325781345367432 0.0003956133150495589 0.049302585422992706 Opacities: 0.0008357342449016869 1.0 0.23739202320575714 0.2816372513771057
---INFO--- Starting entropy regularization.
---INFO--- Resetting neighbors... Traceback (most recent call last): File "/home/mm/ARWorkspace/SuGaR/train.py", line 120, in
coarse_sugar_path = coarse_training_with_density_regularization(coarse_args)
File "/home/mm/ARWorkspace/SuGaR/sugar_trainers/coarse_density.py", line 526, in coarse_training_with_density_regularization
gt_rgb = gt_image.view(-1, sugar.image_height, sugar.image_width, 3)
RuntimeError: shape '[-1, 360, 640, 3]' is invalid for input of size 689280