Closed YafeiWangAlice closed 6 years ago
I have already fixed this issue. So I will close it.
@YafeiWangAlice, hi, how do you fix this problem, where to find the config file "nvblas.conf", I search this file in whole system, I can't find it.
@xinwf
@YafeiWangAlice , I have fixed this problem, but another problem CPU Blas library need to be provided
still exists, how to solve it? (emm, is this your qq email wangyafei420
?)
System information
Steps to reproduce the issue:
Alice@in_dev_docker:/apollo/bazel-bin/modules/perception/obstacle/camera/detector/yolo_camera_detector$ ./yolo_camera_detector_test [NVBLAS] NVBLAS_CONFIG_FILE environment variable is set to '/usr/local/cuda' [NVBLAS] Config parsed [NVBLAS] CPU Blas library need to be provided Running main() from gmock_main.cc [==========] Running 3 tests from 1 test case. [----------] Global test environment set-up. [----------] 3 tests from YoloCameraDetectorTest [ RUN ] YoloCameraDetectorTest.model_init_test WARNING: Logging before InitGoogleLogging() is written to STDERR W1101 10:54:04.100378 23007 yolo_camera_detector.cc:125] YoloCameraDetector options.intrinsic is nullptr. Use default I1101 10:54:04.317409 23007 common.cpp:177] Device id: 0 I1101 10:54:04.317451 23007 common.cpp:178] Major revision number: 6 I1101 10:54:04.317454 23007 common.cpp:179] Minor revision number: 1 I1101 10:54:04.317458 23007 common.cpp:180] Name: GeForce GTX 1080 I1101 10:54:04.317478 23007 common.cpp:181] Total global memory: 8499691520 I1101 10:54:04.317488 23007 common.cpp:182] Total shared memory per block: 49152 I1101 10:54:04.317493 23007 common.cpp:183] Total registers per block: 65536 I1101 10:54:04.317497 23007 common.cpp:184] Warp size: 32 I1101 10:54:04.317519 23007 common.cpp:185] Maximum memory pitch: 2147483647 I1101 10:54:04.317524 23007 common.cpp:186] Maximum threads per block: 1024 I1101 10:54:04.317543 23007 common.cpp:187] Maximum dimension of block: 1024, 1024, 64 I1101 10:54:04.317549 23007 common.cpp:190] Maximum dimension of grid: 2147483647, 65535, 65535 I1101 10:54:04.317569 23007 common.cpp:193] Clock rate: 1809500 I1101 10:54:04.317574 23007 common.cpp:194] Total constant memory: 65536 I1101 10:54:04.317579 23007 common.cpp:195] Texture alignment: 512 I1101 10:54:04.317584 23007 common.cpp:196] Concurrent copy and execution: Yes I1101 10:54:04.317589 23007 common.cpp:198] Number of multiprocessors: 20 I1101 10:54:04.317593 23007 common.cpp:199] Kernel execution timeout: Yes I1101 10:54:04.325739 23007 net.cpp:52] Initializing net from parameters: name: "darknet-16c-16x-3d" state { phase: TEST } layer { name: "input" type: "Input" top: "data" input_param { shape { dim: 1 dim: 384 dim: 960 dim: 3 } } } layer { name: "data_perm" type: "Permute" bottom: "data" top: "data_perm" permute_param { order: 0 order: 3 order: 1 order: 2 } } layer { name: "data_scale" type: "Power" bottom: "data_perm" top: "data_scale" power_param { power: 1 scale: 0.0039215689 shift: 0 } } layer { name: "conv1" type: "Convolution" bottom: "data_scale" top: "conv1" convolution_param { num_output: 16 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv1_relu" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" convolution_param { num_output: 32 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv2_relu" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "pool2" type: "Pooling" bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv3_1_relu" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" convolution_param { num_output: 32 bias_term: true pad: 0 kernel_size: 1 stride: 1 dilation: 1 } } layer { name: "conv3_2_relu" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv3_3_relu" type: "ReLU" bottom: "conv3_3" top: "conv3_3" } layer { name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" convolution_param { num_output: 128 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv4_1_relu" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" convolution_param { num_output: 64 bias_term: true pad: 0 kernel_size: 1 stride: 1 dilation: 1 } } layer { name: "conv4_2_relu" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" convolution_param { num_output: 128 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv4_3_relu" type: "ReLU" bottom: "conv4_3" top: "conv4_3" } layer { name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" convolution_param { num_output: 256 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv5_1_relu" type: "ReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" convolution_param { num_output: 128 bias_term: true pad: 0 kernel_size: 1 stride: 1 dilation: 1 } } layer { name: "conv5_2_relu" type: "ReLU" bottom: "conv5_2" top: "conv5_2" } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" convolution_param { num_output: 256 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv5_3_relu" type: "ReLU" bottom: "conv5_3" top: "conv5_3" } layer { name: "conv5_4" type: "Convolution" bottom: "conv5_3" top: "conv5_4" convolution_param { num_output: 128 bias_term: true pad: 0 kernel_size: 1 stride: 1 dilation: 1 } } layer { name: "conv5_4_relu" type: "ReLU" bottom: "conv5_4" top: "conv5_4" } layer { name: "conv5_5" type: "Convolution" bottom: "conv5_4" top: "conv5_5" convolution_param { num_output: 256 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv5_5_relu" type: "ReLU" bottom: "conv5_5" top: "conv5_5" } layer { name: "pool5" type: "Pooling" bottom: "conv5_5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "conv6_1_nodilate" type: "Convolution" bottom: "pool5" top: "conv6_1" convolution_param { num_output: 512 bias_term: true pad: 2 kernel_size: 5 stride: 1 dilation: 1 } } layer { name: "conv6_1_relu" type: "ReLU" bottom: "conv6_1" top: "conv6_1" } layer { name: "conv6_2" type: "Convolution" bottom: "conv6_1" top: "conv6_2" convolution_param { num_output: 256 bias_term: true pad: 0 kernel_size: 1 stride: 1 dilation: 1 } } layer { name: "conv6_2_relu" type: "ReLU" bottom: "conv6_2" top: "conv6_2" } layer { name: "conv6_3" type: "Convolution" bottom: "conv6_2" top: "conv6_3" convolution_param { num_output: 512 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv6_3_relu" type: "ReLU" bottom: "conv6_3" top: "conv6_3" } layer { name: "conv6_4" type: "Convolution" bottom: "conv6_3" top: "conv6_4" convolution_param { num_output: 256 bias_term: true pad: 0 kernel_size: 1 stride: 1 dilation: 1 } } layer { name: "conv6_4_relu" type: "ReLU" bottom: "conv6_4" top: "conv6_4" } layer { name: "conv6_5" type: "Convolution" bottom: "conv6_4" top: "conv6_5" convolution_param { num_output: 512 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv6_5_relu" type: "ReLU" bottom: "conv6_5" top: "conv6_5" } layer { name: "conv7_1" type: "Convolution" bottom: "conv6_5" top: "conv7_1" convolution_param { num_output: 512 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv7_1_relu" type: "ReLU" bottom: "conv7_1" top: "conv7_1" } layer { name: "conv7_2" type: "Convolution" bottom: "conv7_1" top: "conv7_2" convolution_param { num_output: 512 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv7_2_relu" type: "ReLU" bottom: "conv7_2" top: "conv7_2" } layer { name: "concat8" type: "Concat" bottom: "conv5_5" bottom: "conv7_2" top: "concat8" concat_param { axis: 1 } } layer { name: "conv9" type: "Convolution" bottom: "concat8" top: "conv9" convolution_param { num_output: 512 bias_term: true pad: 1 kernel_size: 3 stride: 1 dilation: 1 } } layer { name: "conv9_relu" type: "ReLU" bottom: "conv9" top: "conv9" } layer { name: "conv_final" type: "Convolution" bottom: "conv9" top: "conv_final" convolution_param { num_output: 144 bias_term: true pad: 0 kernel_size: 1 stride: 1 } } layer { name: "conv_final_permute" type: "Permute" bottom: "conv_final" top: "conv_final_permute" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "slice" type: "Slice" bottom: "conv_final_permute" top: "loc_pred" top: "obj_perm" top: "cls_perm" slice_param { slice_point: 64 slice_point: 80 axis: 3 } } layer { name: "cls_reshape" type: "Reshape" bottom: "cls_perm" top: "cls_reshape" reshape_param { shape { dim: 0 dim: 0 dim: -1 dim: 4 } } } layer { name: "cls_pred_prob" type: "Softmax" bottom: "cls_reshape" top: "cls_pred_prob" softmax_param { axis: 3 } } layer { name: "cls_pred" type: "Reshape" bottom: "cls_pred_prob" top: "cls_pred" reshape_param { shape { dim: 0 dim: 0 dim: -1 dim: 64 } } } layer { name: "obj_pred" type: "Sigmoid" bottom: "obj_perm" top: "obj_pred" } layer { name: "ori_origin" type: "Convolution" bottom: "conv9" top: "ori_origin" convolution_param { num_output: 32 bias_term: true pad: 0 kernel_size: 1 stride: 1 } } layer { name: "ori_pred" type: "Permute" bottom: "ori_origin" top: "ori_pred" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "dim_origin" type: "Convolution" bottom: "conv9" top: "dim_origin" convolution_param { num_output: 48 bias_term: true pad: 0 kernel_size: 1 stride: 1 } } layer { name: "dim_pred" type: "Permute" bottom: "dim_origin" top: "dim_pred" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "lof_origin" type: "Convolution" bottom: "conv9" top: "lof_origin" propagate_down: false convolution_param { num_output: 64 bias_term: true pad: 0 kernel_size: 1 stride: 1 } } layer { name: "lof_perm" type: "Permute" bottom: "lof_origin" top: "lof_pred" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "lor_origin" type: "Convolution" bottom: "conv9" top: "lor_origin" propagate_down: false convolution_param { num_output: 64 bias_term: true pad: 0 kernel_size: 1 stride: 1 } } layer { name: "lor_perm" type: "Permute" bottom: "lor_origin" top: "lor_pred" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "reduce1_lane" type: "Convolution" bottom: "concat8" top: "reduce1_lane" convolution_param { num_output: 128 bias_term: true pad: 1 kernel_size: 3 stride: 1 } } layer { name: "reduce1_lane_relu" type: "ReLU" bottom: "reduce1_lane" top: "reduce1_lane" } layer { name: "deconv1_lane" type: "Deconvolution" bottom: "reduce1_lane" top: "deconv1_lane" convolution_param { num_output: 64 bias_term: true pad: 0 kernel_size: 2 stride: 2 } } layer { name: "deconv1_lane_relu" type: "ReLU" bottom: "deconv1_lane" top: "deconv1_lane" } layer { name: "reorg4" type: "Convolution" bottom: "conv4_3" top: "reorg4" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "reorg4_relu" type: "ReLU" bottom: "reorg4" top: "reorg4" } layer { name: "concat4" type: "Concat" bottom: "reorg4" bottom: "deconv1_lane" top: "concat4" concat_param { axis: 1 } } layer { name: "reduce2_lane" type: "Convolution" bottom: "concat4" top: "reduce2_lane" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 stride: 1 } } layer { name: "reduce2_lane_relu" type: "ReLU" bottom: "reduce2_lane" top: "reduce2_lane" } layer { name: "deconv2_lane" type: "Deconvolution" bottom: "reduce2_lane" top: "deconv2_lane" convolution_param { num_output: 32 bias_term: true pad: 0 kernel_size: 2 stride: 2 } } layer { name: "deconv2_lane_relu" type: "ReLU" bottom: "deconv2_lane" top: "deconv2_lane" } layer { name: "reorg3" type: "Convolution" bottom: "conv3_3" top: "reorg3" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "reorg3_relu" type: "ReLU" bottom: "reorg3" top: "reorg3" } layer { name: "concat3" type: "Concat" bottom: "reorg3" bottom: "deconv2_lane" top: "concat3" concat_param { axis: 1 } } layer { name: "reduce3_lane" type: "Convolution" bottom: "concat3" top: "reduce3_lane" convolution_param { num_output: 32 bias_term: true pad: 1 kernel_size: 3 stride: 1 } } layer { name: "reduce3_lane_relu" type: "ReLU" bottom: "reduce3_lane" top: "reduce3_lane" } layer { name: "deconv3_lane" type: "Deconvolution" bottom: "reduce3_lane" top: "deconv3_lane" convolution_param { num_output: 16 bias_term: true pad: 0 kernel_size: 2 stride: 2 } } layer { name: "deconv3_lane_relu" type: "ReLU" bottom: "deconv3_lane" top: "deconv3_lane" } layer { name: "reorg2" type: "Convolution" bottom: "conv2" top: "reorg2" convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "reorg2_relu" type: "ReLU" bottom: "reorg2" top: "reorg2" } layer { name: "concat2" type: "Concat" bottom: "reorg2" bottom: "deconv3_lane" top: "concat2" concat_param { axis: 1 } } layer { name: "reduce4_lane" type: "Convolution" bottom: "concat2" top: "reduce4_lane" convolution_param { num_output: 16 bias_term: true pad: 1 kernel_size: 3 stride: 1 } } layer { name: "reduce4_lane_relu" type: "ReLU" bottom: "reduce4_lane" top: "reduce4_lane" } layer { name: "deconv4_lane" type: "Deconvolution" bottom: "reduce4_lane" top: "deconv4_lane" convolution_param { num_output: 8 bias_term: true pad: 0 kernel_size: 2 stride: 2 } } layer { name: "deconv4_lane_relu" type: "ReLU" bottom: "deconv4_lane" top: "deconv4_lane" } layer { name: "reorg1" type: "Convolution" bottom: "conv1" top: "reorg1" convolution_param { num_output: 8 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "reorg1_relu" type: "ReLU" bottom: "reorg1" top: "reorg1" } layer { name: "concat1" type: "Concat" bottom: "reorg1" bottom: "deconv4_lane" top: "concat1" concat_param { axis: 1 } } layer { name: "conv_out" type: "Convolution" bottom: "concat1" top: "conv_out" convolution_param { num_output: 4 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "seg_prob" type: "Softmax" bottom: "conv_out" top: "seg_prob" softmax_param { axis: 1 } } I1101 10:54:04.328699 23007 net.cpp:94] Creating Layer input I1101 10:54:04.328732 23007 net.cpp:402] input -> data I1101 10:54:04.339604 23007 net.cpp:144] Setting up input I1101 10:54:04.339648 23007 net.cpp:151] Top shape: 1 384 960 3 (1105920) I1101 10:54:04.339655 23007 net.cpp:159] Memory required for data: 4423680 I1101 10:54:04.339751 23007 net.cpp:94] Creating Layer data_perm I1101 10:54:04.339848 23007 net.cpp:428] data_perm <- data I1101 10:54:04.339888 23007 net.cpp:402] data_perm -> data_perm I1101 10:54:04.340045 23007 net.cpp:144] Setting up data_perm I1101 10:54:04.340057 23007 net.cpp:151] Top shape: 1 3 384 960 (1105920) I1101 10:54:04.340065 23007 net.cpp:159] Memory required for data: 8847360 I1101 10:54:04.340111 23007 net.cpp:94] Creating Layer data_scale I1101 10:54:04.340118 23007 net.cpp:428] data_scale <- data_perm I1101 10:54:04.340128 23007 net.cpp:402] data_scale -> data_scale I1101 10:54:04.340160 23007 net.cpp:144] Setting up data_scale I1101 10:54:04.340185 23007 net.cpp:151] Top shape: 1 3 384 960 (1105920) I1101 10:54:04.340191 23007 net.cpp:159] Memory required for data: 13271040 I1101 10:54:04.340217 23007 net.cpp:94] Creating Layer conv1 I1101 10:54:04.340239 23007 net.cpp:428] conv1 <- data_scale I1101 10:54:04.340247 23007 net.cpp:402] conv1 -> conv1 I1101 10:54:04.716864 23007 net.cpp:144] Setting up conv1 I1101 10:54:04.716895 23007 net.cpp:151] Top shape: 1 16 384 960 (5898240) I1101 10:54:04.716917 23007 net.cpp:159] Memory required for data: 36864000 I1101 10:54:04.717072 23007 net.cpp:94] Creating Layer conv1_relu I1101 10:54:04.717097 23007 net.cpp:428] conv1_relu <- conv1 I1101 10:54:04.717109 23007 net.cpp:389] conv1_relu -> conv1 (in-place) I1101 10:54:04.717661 23007 net.cpp:144] Setting up conv1_relu I1101 10:54:04.717687 23007 net.cpp:151] Top shape: 1 16 384 960 (5898240) I1101 10:54:04.717706 23007 net.cpp:159] Memory required for data: 60456960 I1101 10:54:04.717733 23007 net.cpp:94] Creating Layer conv1_conv1_relu_0_split I1101 10:54:04.717741 23007 net.cpp:428] conv1_conv1_relu_0_split <- conv1 I1101 10:54:04.717763 23007 net.cpp:402] conv1_conv1_relu_0_split -> conv1_conv1_relu_0_split_0 I1101 10:54:04.717784 23007 net.cpp:402] conv1_conv1_relu_0_split -> conv1_conv1_relu_0_split_1 I1101 10:54:04.717833 23007 net.cpp:144] Setting up conv1_conv1_relu_0_split I1101 10:54:04.717845 23007 net.cpp:151] Top shape: 1 16 384 960 (5898240) I1101 10:54:04.717852 23007 net.cpp:151] Top shape: 1 16 384 960 (5898240) I1101 10:54:04.717857 23007 net.cpp:159] Memory required for data: 107642880 I1101 10:54:04.717871 23007 net.cpp:94] Creating Layer pool1 I1101 10:54:04.717877 23007 net.cpp:428] pool1 <- conv1_conv1_relu_0_split_0 I1101 10:54:04.717932 23007 net.cpp:402] pool1 -> pool1 I1101 10:54:04.717990 23007 net.cpp:144] Setting up pool1 I1101 10:54:04.718001 23007 net.cpp:151] Top shape: 1 16 192 480 (1474560) I1101 10:54:04.718006 23007 net.cpp:159] Memory required for data: 113541120 I1101 10:54:04.718019 23007 net.cpp:94] Creating Layer conv2 I1101 10:54:04.718026 23007 net.cpp:428] conv2 <- pool1 I1101 10:54:04.718051 23007 net.cpp:402] conv2 -> conv2 I1101 10:54:04.719977 23007 net.cpp:144] Setting up conv2 I1101 10:54:04.719995 23007 net.cpp:151] Top shape: 1 32 192 480 (2949120) I1101 10:54:04.720001 23007 net.cpp:159] Memory required for data: 125337600 I1101 10:54:04.720024 23007 net.cpp:94] Creating Layer conv2_relu I1101 10:54:04.720031 23007 net.cpp:428] conv2_relu <- conv2 I1101 10:54:04.720039 23007 net.cpp:389] conv2_relu -> conv2 (in-place) I1101 10:54:04.720252 23007 net.cpp:144] Setting up conv2_relu I1101 10:54:04.720263 23007 net.cpp:151] Top shape: 1 32 192 480 (2949120) I1101 10:54:04.720268 23007 net.cpp:159] Memory required for data: 137134080 I1101 10:54:04.720278 23007 net.cpp:94] Creating Layer conv2_conv2_relu_0_split I1101 10:54:04.720283 23007 net.cpp:428] conv2_conv2_relu_0_split <- conv2 I1101 10:54:04.720293 23007 net.cpp:402] conv2_conv2_relu_0_split -> conv2_conv2_relu_0_split_0 I1101 10:54:04.720304 23007 net.cpp:402] conv2_conv2_relu_0_split -> conv2_conv2_relu_0_split_1 I1101 10:54:04.720355 23007 net.cpp:144] Setting up conv2_conv2_relu_0_split I1101 10:54:04.720378 23007 net.cpp:151] Top shape: 1 32 192 480 (2949120) I1101 10:54:04.720386 23007 net.cpp:151] Top shape: 1 32 192 480 (2949120) I1101 10:54:04.720391 23007 net.cpp:159] Memory required for data: 160727040 I1101 10:54:04.720399 23007 net.cpp:94] Creating Layer pool2 I1101 10:54:04.720407 23007 net.cpp:428] pool2 <- conv2_conv2_relu_0_split_0 I1101 10:54:04.720428 23007 net.cpp:402] pool2 -> pool2 I1101 10:54:04.720463 23007 net.cpp:144] Setting up pool2 I1101 10:54:04.720472 23007 net.cpp:151] Top shape: 1 32 96 240 (737280) I1101 10:54:04.720479 23007 net.cpp:159] Memory required for data: 163676160 I1101 10:54:04.720489 23007 net.cpp:94] Creating Layer conv3_1 I1101 10:54:04.720494 23007 net.cpp:428] conv3_1 <- pool2 I1101 10:54:04.720520 23007 net.cpp:402] conv3_1 -> conv3_1 I1101 10:54:04.722091 23007 net.cpp:144] Setting up conv3_1 I1101 10:54:04.722107 23007 net.cpp:151] Top shape: 1 64 96 240 (1474560) I1101 10:54:04.722113 23007 net.cpp:159] Memory required for data: 169574400 I1101 10:54:04.722147 23007 net.cpp:94] Creating Layer conv3_1_relu I1101 10:54:04.722154 23007 net.cpp:428] conv3_1_relu <- conv3_1 I1101 10:54:04.722162 23007 net.cpp:389] conv3_1_relu -> conv3_1 (in-place) I1101 10:54:04.722362 23007 net.cpp:144] Setting up conv3_1_relu I1101 10:54:04.722400 23007 net.cpp:151] Top shape: 1 64 96 240 (1474560) I1101 10:54:04.722406 23007 net.cpp:159] Memory required for data: 175472640 I1101 10:54:04.722417 23007 net.cpp:94] Creating Layer conv3_2 I1101 10:54:04.722424 23007 net.cpp:428] conv3_2 <- conv3_1 I1101 10:54:04.722432 23007 net.cpp:402] conv3_2 -> conv3_2 I1101 10:54:04.723989 23007 net.cpp:144] Setting up conv3_2 I1101 10:54:04.724004 23007 net.cpp:151] Top shape: 1 32 96 240 (737280) I1101 10:54:04.724010 23007 net.cpp:159] Memory required for data: 178421760 I1101 10:54:04.724023 23007 net.cpp:94] Creating Layer conv3_2_relu I1101 10:54:04.724030 23007 net.cpp:428] conv3_2_relu <- conv3_2 I1101 10:54:04.724038 23007 net.cpp:389] conv3_2_relu -> conv3_2 (in-place) I1101 10:54:04.724551 23007 net.cpp:144] Setting up conv3_2_relu I1101 10:54:04.724565 23007 net.cpp:151] Top shape: 1 32 96 240 (737280) I1101 10:54:04.724584 23007 net.cpp:159] Memory required for data: 181370880 I1101 10:54:04.724611 23007 net.cpp:94] Creating Layer conv3_3 I1101 10:54:04.724617 23007 net.cpp:428] conv3_3 <- conv3_2 I1101 10:54:04.724640 23007 net.cpp:402] conv3_3 -> conv3_3 I1101 10:54:04.725731 23007 net.cpp:144] Setting up conv3_3 I1101 10:54:04.725747 23007 net.cpp:151] Top shape: 1 64 96 240 (1474560) I1101 10:54:04.725754 23007 net.cpp:159] Memory required for data: 187269120 I1101 10:54:04.725775 23007 net.cpp:94] Creating Layer conv3_3_relu I1101 10:54:04.725782 23007 net.cpp:428] conv3_3_relu <- conv3_3 I1101 10:54:04.725790 23007 net.cpp:389] conv3_3_relu -> conv3_3 (in-place) I1101 10:54:04.726012 23007 net.cpp:144] Setting up conv3_3_relu I1101 10:54:04.726024 23007 net.cpp:151] Top shape: 1 64 96 240 (1474560) I1101 10:54:04.726030 23007 net.cpp:159] Memory required for data: 193167360 I1101 10:54:04.726039 23007 net.cpp:94] Creating Layer conv3_3_conv3_3_relu_0_split I1101 10:54:04.726047 23007 net.cpp:428] conv3_3_conv3_3_relu_0_split <- conv3_3 I1101 10:54:04.726068 23007 net.cpp:402] conv3_3_conv3_3_relu_0_split -> conv3_3_conv3_3_relu_0_split_0 I1101 10:54:04.726090 23007 net.cpp:402] conv3_3_conv3_3_relu_0_split -> conv3_3_conv3_3_relu_0_split_1 I1101 10:54:04.726130 23007 net.cpp:144] Setting up conv3_3_conv3_3_relu_0_split I1101 10:54:04.726140 23007 net.cpp:151] Top shape: 1 64 96 240 (1474560) I1101 10:54:04.726147 23007 net.cpp:151] Top shape: 1 64 96 240 (1474560) I1101 10:54:04.726166 23007 net.cpp:159] Memory required for data: 204963840 I1101 10:54:04.726174 23007 net.cpp:94] Creating Layer pool3 I1101 10:54:04.726182 23007 net.cpp:428] pool3 <- conv3_3_conv3_3_relu_0_split_0 I1101 10:54:04.726192 23007 net.cpp:402] pool3 -> pool3 I1101 10:54:04.726229 23007 net.cpp:144] Setting up pool3 I1101 10:54:04.726239 23007 net.cpp:151] Top shape: 1 64 48 120 (368640) I1101 10:54:04.726258 23007 net.cpp:159] Memory required for data: 206438400 I1101 10:54:04.726271 23007 net.cpp:94] Creating Layer conv4_1 I1101 10:54:04.726277 23007 net.cpp:428] conv4_1 <- pool3 I1101 10:54:04.726287 23007 net.cpp:402] conv4_1 -> conv4_1 I1101 10:54:04.728085 23007 net.cpp:144] Setting up conv4_1 I1101 10:54:04.728102 23007 net.cpp:151] Top shape: 1 128 48 120 (737280) I1101 10:54:04.728109 23007 net.cpp:159] Memory required for data: 209387520 I1101 10:54:04.728123 23007 net.cpp:94] Creating Layer conv4_1_relu I1101 10:54:04.728132 23007 net.cpp:428] conv4_1_relu <- conv4_1 I1101 10:54:04.728140 23007 net.cpp:389] conv4_1_relu -> conv4_1 (in-place) I1101 10:54:04.728334 23007 net.cpp:144] Setting up conv4_1_relu I1101 10:54:04.728346 23007 net.cpp:151] Top shape: 1 128 48 120 (737280) I1101 10:54:04.728351 23007 net.cpp:159] Memory required for data: 212336640 I1101 10:54:04.728363 23007 net.cpp:94] Creating Layer conv4_2 I1101 10:54:04.728369 23007 net.cpp:428] conv4_2 <- conv4_1 I1101 10:54:04.728379 23007 net.cpp:402] conv4_2 -> conv4_2 I1101 10:54:04.729379 23007 net.cpp:144] Setting up conv4_2 I1101 10:54:04.729394 23007 net.cpp:151] Top shape: 1 64 48 120 (368640) I1101 10:54:04.729400 23007 net.cpp:159] Memory required for data: 213811200 I1101 10:54:04.729414 23007 net.cpp:94] Creating Layer conv4_2_relu I1101 10:54:04.729421 23007 net.cpp:428] conv4_2_relu <- conv4_2 I1101 10:54:04.729430 23007 net.cpp:389] conv4_2_relu -> conv4_2 (in-place) I1101 10:54:04.729892 23007 net.cpp:144] Setting up conv4_2_relu I1101 10:54:04.729905 23007 net.cpp:151] Top shape: 1 64 48 120 (368640) I1101 10:54:04.729910 23007 net.cpp:159] Memory required for data: 215285760 I1101 10:54:04.729923 23007 net.cpp:94] Creating Layer conv4_3 I1101 10:54:04.729929 23007 net.cpp:428] conv4_3 <- conv4_2 I1101 10:54:04.729939 23007 net.cpp:402] conv4_3 -> conv4_3 I1101 10:54:04.731241 23007 net.cpp:144] Setting up conv4_3 I1101 10:54:04.731258 23007 net.cpp:151] Top shape: 1 128 48 120 (737280) I1101 10:54:04.731264 23007 net.cpp:159] Memory required for data: 218234880 I1101 10:54:04.731278 23007 net.cpp:94] Creating Layer conv4_3_relu I1101 10:54:04.731286 23007 net.cpp:428] conv4_3_relu <- conv4_3 I1101 10:54:04.731295 23007 net.cpp:389] conv4_3_relu -> conv4_3 (in-place) I1101 10:54:04.731555 23007 net.cpp:144] Setting up conv4_3_relu I1101 10:54:04.731568 23007 net.cpp:151] Top shape: 1 128 48 120 (737280) I1101 10:54:04.731587 23007 net.cpp:159] Memory required for data: 221184000 I1101 10:54:04.731595 23007 net.cpp:94] Creating Layer conv4_3_conv4_3_relu_0_split I1101 10:54:04.731616 23007 net.cpp:428] conv4_3_conv4_3_relu_0_split <- conv4_3 I1101 10:54:04.731626 23007 net.cpp:402] conv4_3_conv4_3_relu_0_split -> conv4_3_conv4_3_relu_0_split_0 I1101 10:54:04.731636 23007 net.cpp:402] conv4_3_conv4_3_relu_0_split -> conv4_3_conv4_3_relu_0_split_1 I1101 10:54:04.731684 23007 net.cpp:144] Setting up conv4_3_conv4_3_relu_0_split I1101 10:54:04.731695 23007 net.cpp:151] Top shape: 1 128 48 120 (737280) I1101 10:54:04.731703 23007 net.cpp:151] Top shape: 1 128 48 120 (737280) I1101 10:54:04.731711 23007 net.cpp:159] Memory required for data: 227082240 I1101 10:54:04.731720 23007 net.cpp:94] Creating Layer pool4 I1101 10:54:04.731725 23007 net.cpp:428] pool4 <- conv4_3_conv4_3_relu_0_split_0 I1101 10:54:04.731748 23007 net.cpp:402] pool4 -> pool4 I1101 10:54:04.731812 23007 net.cpp:144] Setting up pool4 I1101 10:54:04.731822 23007 net.cpp:151] Top shape: 1 128 24 60 (184320) I1101 10:54:04.731827 23007 net.cpp:159] Memory required for data: 227819520 I1101 10:54:04.731853 23007 net.cpp:94] Creating Layer conv5_1 I1101 10:54:04.731858 23007 net.cpp:428] conv5_1 <- pool4 I1101 10:54:04.731868 23007 net.cpp:402] conv5_1 -> conv5_1 I1101 10:54:04.733287 23007 net.cpp:144] Setting up conv5_1 I1101 10:54:04.733302 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.733322 23007 net.cpp:159] Memory required for data: 229294080 I1101 10:54:04.733357 23007 net.cpp:94] Creating Layer conv5_1_relu I1101 10:54:04.733366 23007 net.cpp:428] conv5_1_relu <- conv5_1 I1101 10:54:04.733373 23007 net.cpp:389] conv5_1_relu -> conv5_1 (in-place) I1101 10:54:04.733598 23007 net.cpp:144] Setting up conv5_1_relu I1101 10:54:04.733610 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.733616 23007 net.cpp:159] Memory required for data: 230768640 I1101 10:54:04.733641 23007 net.cpp:94] Creating Layer conv5_2 I1101 10:54:04.733647 23007 net.cpp:428] conv5_2 <- conv5_1 I1101 10:54:04.733671 23007 net.cpp:402] conv5_2 -> conv5_2 I1101 10:54:04.734689 23007 net.cpp:144] Setting up conv5_2 I1101 10:54:04.734704 23007 net.cpp:151] Top shape: 1 128 24 60 (184320) I1101 10:54:04.734724 23007 net.cpp:159] Memory required for data: 231505920 I1101 10:54:04.734738 23007 net.cpp:94] Creating Layer conv5_2_relu I1101 10:54:04.734745 23007 net.cpp:428] conv5_2_relu <- conv5_2 I1101 10:54:04.734753 23007 net.cpp:389] conv5_2_relu -> conv5_2 (in-place) I1101 10:54:04.734997 23007 net.cpp:144] Setting up conv5_2_relu I1101 10:54:04.735008 23007 net.cpp:151] Top shape: 1 128 24 60 (184320) I1101 10:54:04.735013 23007 net.cpp:159] Memory required for data: 232243200 I1101 10:54:04.735039 23007 net.cpp:94] Creating Layer conv5_3 I1101 10:54:04.735046 23007 net.cpp:428] conv5_3 <- conv5_2 I1101 10:54:04.735069 23007 net.cpp:402] conv5_3 -> conv5_3 I1101 10:54:04.737016 23007 net.cpp:144] Setting up conv5_3 I1101 10:54:04.737033 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.737040 23007 net.cpp:159] Memory required for data: 233717760 I1101 10:54:04.737058 23007 net.cpp:94] Creating Layer conv5_3_relu I1101 10:54:04.737066 23007 net.cpp:428] conv5_3_relu <- conv5_3 I1101 10:54:04.737088 23007 net.cpp:389] conv5_3_relu -> conv5_3 (in-place) I1101 10:54:04.737637 23007 net.cpp:144] Setting up conv5_3_relu I1101 10:54:04.737665 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.737671 23007 net.cpp:159] Memory required for data: 235192320 I1101 10:54:04.737695 23007 net.cpp:94] Creating Layer conv5_4 I1101 10:54:04.737701 23007 net.cpp:428] conv5_4 <- conv5_3 I1101 10:54:04.737712 23007 net.cpp:402] conv5_4 -> conv5_4 I1101 10:54:04.738749 23007 net.cpp:144] Setting up conv5_4 I1101 10:54:04.738765 23007 net.cpp:151] Top shape: 1 128 24 60 (184320) I1101 10:54:04.738785 23007 net.cpp:159] Memory required for data: 235929600 I1101 10:54:04.738811 23007 net.cpp:94] Creating Layer conv5_4_relu I1101 10:54:04.738817 23007 net.cpp:428] conv5_4_relu <- conv5_4 I1101 10:54:04.738827 23007 net.cpp:389] conv5_4_relu -> conv5_4 (in-place) I1101 10:54:04.739017 23007 net.cpp:144] Setting up conv5_4_relu I1101 10:54:04.739028 23007 net.cpp:151] Top shape: 1 128 24 60 (184320) I1101 10:54:04.739046 23007 net.cpp:159] Memory required for data: 236666880 I1101 10:54:04.739058 23007 net.cpp:94] Creating Layer conv5_5 I1101 10:54:04.739064 23007 net.cpp:428] conv5_5 <- conv5_4 I1101 10:54:04.739075 23007 net.cpp:402] conv5_5 -> conv5_5 I1101 10:54:04.741005 23007 net.cpp:144] Setting up conv5_5 I1101 10:54:04.741022 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.741029 23007 net.cpp:159] Memory required for data: 238141440 I1101 10:54:04.741042 23007 net.cpp:94] Creating Layer conv5_5_relu I1101 10:54:04.741050 23007 net.cpp:428] conv5_5_relu <- conv5_5 I1101 10:54:04.741072 23007 net.cpp:389] conv5_5_relu -> conv5_5 (in-place) I1101 10:54:04.741266 23007 net.cpp:144] Setting up conv5_5_relu I1101 10:54:04.741277 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.741283 23007 net.cpp:159] Memory required for data: 239616000 I1101 10:54:04.741293 23007 net.cpp:94] Creating Layer conv5_5_conv5_5_relu_0_split I1101 10:54:04.741299 23007 net.cpp:428] conv5_5_conv5_5_relu_0_split <- conv5_5 I1101 10:54:04.741308 23007 net.cpp:402] conv5_5_conv5_5_relu_0_split -> conv5_5_conv5_5_relu_0_split_0 I1101 10:54:04.741317 23007 net.cpp:402] conv5_5_conv5_5_relu_0_split -> conv5_5_conv5_5_relu_0_split_1 I1101 10:54:04.741397 23007 net.cpp:144] Setting up conv5_5_conv5_5_relu_0_split I1101 10:54:04.741408 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.741415 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.741420 23007 net.cpp:159] Memory required for data: 242565120 I1101 10:54:04.741443 23007 net.cpp:94] Creating Layer pool5 I1101 10:54:04.741449 23007 net.cpp:428] pool5 <- conv5_5_conv5_5_relu_0_split_0 I1101 10:54:04.741459 23007 net.cpp:402] pool5 -> pool5 I1101 10:54:04.741494 23007 net.cpp:144] Setting up pool5 I1101 10:54:04.741516 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.741523 23007 net.cpp:159] Memory required for data: 244039680 I1101 10:54:04.741536 23007 net.cpp:94] Creating Layer conv6_1_nodilate I1101 10:54:04.741542 23007 net.cpp:428] conv6_1_nodilate <- pool5 I1101 10:54:04.741551 23007 net.cpp:402] conv6_1_nodilate -> conv6_1 I1101 10:54:04.746732 23007 net.cpp:144] Setting up conv6_1_nodilate I1101 10:54:04.746779 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.746785 23007 net.cpp:159] Memory required for data: 246988800 I1101 10:54:04.746824 23007 net.cpp:94] Creating Layer conv6_1_relu I1101 10:54:04.746831 23007 net.cpp:428] conv6_1_relu <- conv6_1 I1101 10:54:04.746855 23007 net.cpp:389] conv6_1_relu -> conv6_1 (in-place) I1101 10:54:04.747437 23007 net.cpp:144] Setting up conv6_1_relu I1101 10:54:04.747452 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.747457 23007 net.cpp:159] Memory required for data: 249937920 I1101 10:54:04.747486 23007 net.cpp:94] Creating Layer conv6_2 I1101 10:54:04.747493 23007 net.cpp:428] conv6_2 <- conv6_1 I1101 10:54:04.747530 23007 net.cpp:402] conv6_2 -> conv6_2 I1101 10:54:04.748713 23007 net.cpp:144] Setting up conv6_2 I1101 10:54:04.748742 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.748762 23007 net.cpp:159] Memory required for data: 251412480 I1101 10:54:04.748777 23007 net.cpp:94] Creating Layer conv6_2_relu I1101 10:54:04.748785 23007 net.cpp:428] conv6_2_relu <- conv6_2 I1101 10:54:04.748807 23007 net.cpp:389] conv6_2_relu -> conv6_2 (in-place) I1101 10:54:04.749403 23007 net.cpp:144] Setting up conv6_2_relu I1101 10:54:04.749416 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.749423 23007 net.cpp:159] Memory required for data: 252887040 I1101 10:54:04.749449 23007 net.cpp:94] Creating Layer conv6_3 I1101 10:54:04.749456 23007 net.cpp:428] conv6_3 <- conv6_2 I1101 10:54:04.749467 23007 net.cpp:402] conv6_3 -> conv6_3 I1101 10:54:04.752413 23007 net.cpp:144] Setting up conv6_3 I1101 10:54:04.752437 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.752444 23007 net.cpp:159] Memory required for data: 255836160 I1101 10:54:04.752480 23007 net.cpp:94] Creating Layer conv6_3_relu I1101 10:54:04.752487 23007 net.cpp:428] conv6_3_relu <- conv6_3 I1101 10:54:04.752514 23007 net.cpp:389] conv6_3_relu -> conv6_3 (in-place) I1101 10:54:04.752797 23007 net.cpp:144] Setting up conv6_3_relu I1101 10:54:04.752810 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.752815 23007 net.cpp:159] Memory required for data: 258785280 I1101 10:54:04.752842 23007 net.cpp:94] Creating Layer conv6_4 I1101 10:54:04.752848 23007 net.cpp:428] conv6_4 <- conv6_3 I1101 10:54:04.752858 23007 net.cpp:402] conv6_4 -> conv6_4 I1101 10:54:04.754022 23007 net.cpp:144] Setting up conv6_4 I1101 10:54:04.754039 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.754045 23007 net.cpp:159] Memory required for data: 260259840 I1101 10:54:04.754083 23007 net.cpp:94] Creating Layer conv6_4_relu I1101 10:54:04.754103 23007 net.cpp:428] conv6_4_relu <- conv6_4 I1101 10:54:04.754112 23007 net.cpp:389] conv6_4_relu -> conv6_4 (in-place) I1101 10:54:04.754637 23007 net.cpp:144] Setting up conv6_4_relu I1101 10:54:04.754652 23007 net.cpp:151] Top shape: 1 256 24 60 (368640) I1101 10:54:04.754657 23007 net.cpp:159] Memory required for data: 261734400 I1101 10:54:04.754684 23007 net.cpp:94] Creating Layer conv6_5 I1101 10:54:04.754690 23007 net.cpp:428] conv6_5 <- conv6_4 I1101 10:54:04.754703 23007 net.cpp:402] conv6_5 -> conv6_5 I1101 10:54:04.757537 23007 net.cpp:144] Setting up conv6_5 I1101 10:54:04.757565 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.757570 23007 net.cpp:159] Memory required for data: 264683520 I1101 10:54:04.757618 23007 net.cpp:94] Creating Layer conv6_5_relu I1101 10:54:04.757627 23007 net.cpp:428] conv6_5_relu <- conv6_5 I1101 10:54:04.757635 23007 net.cpp:389] conv6_5_relu -> conv6_5 (in-place) I1101 10:54:04.757917 23007 net.cpp:144] Setting up conv6_5_relu I1101 10:54:04.757930 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.757936 23007 net.cpp:159] Memory required for data: 267632640 I1101 10:54:04.757948 23007 net.cpp:94] Creating Layer conv7_1 I1101 10:54:04.757956 23007 net.cpp:428] conv7_1 <- conv6_5 I1101 10:54:04.757964 23007 net.cpp:402] conv7_1 -> conv7_1 I1101 10:54:04.762136 23007 net.cpp:144] Setting up conv7_1 I1101 10:54:04.762167 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.762173 23007 net.cpp:159] Memory required for data: 270581760 I1101 10:54:04.762225 23007 net.cpp:94] Creating Layer conv7_1_relu I1101 10:54:04.762234 23007 net.cpp:428] conv7_1_relu <- conv7_1 I1101 10:54:04.762246 23007 net.cpp:389] conv7_1_relu -> conv7_1 (in-place) I1101 10:54:04.762527 23007 net.cpp:144] Setting up conv7_1_relu I1101 10:54:04.762539 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.762544 23007 net.cpp:159] Memory required for data: 273530880 I1101 10:54:04.762573 23007 net.cpp:94] Creating Layer conv7_2 I1101 10:54:04.762579 23007 net.cpp:428] conv7_2 <- conv7_1 I1101 10:54:04.762590 23007 net.cpp:402] conv7_2 -> conv7_2 I1101 10:54:04.766372 23007 net.cpp:144] Setting up conv7_2 I1101 10:54:04.766404 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.766410 23007 net.cpp:159] Memory required for data: 276480000 I1101 10:54:04.766448 23007 net.cpp:94] Creating Layer conv7_2_relu I1101 10:54:04.766455 23007 net.cpp:428] conv7_2_relu <- conv7_2 I1101 10:54:04.766482 23007 net.cpp:389] conv7_2_relu -> conv7_2 (in-place) I1101 10:54:04.766749 23007 net.cpp:144] Setting up conv7_2_relu I1101 10:54:04.766774 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.766779 23007 net.cpp:159] Memory required for data: 279429120 I1101 10:54:04.766849 23007 net.cpp:94] Creating Layer concat8 I1101 10:54:04.766856 23007 net.cpp:428] concat8 <- conv5_5_conv5_5_relu_0_split_1 I1101 10:54:04.766880 23007 net.cpp:428] concat8 <- conv7_2 I1101 10:54:04.766903 23007 net.cpp:402] concat8 -> concat8 I1101 10:54:04.766988 23007 net.cpp:144] Setting up concat8 I1101 10:54:04.767010 23007 net.cpp:151] Top shape: 1 768 24 60 (1105920) I1101 10:54:04.767019 23007 net.cpp:159] Memory required for data: 283852800 I1101 10:54:04.767055 23007 net.cpp:94] Creating Layer concat8_concat8_0_split I1101 10:54:04.767061 23007 net.cpp:428] concat8_concat8_0_split <- concat8 I1101 10:54:04.767072 23007 net.cpp:402] concat8_concat8_0_split -> concat8_concat8_0_split_0 I1101 10:54:04.767096 23007 net.cpp:402] concat8_concat8_0_split -> concat8_concat8_0_split_1 I1101 10:54:04.767151 23007 net.cpp:144] Setting up concat8_concat8_0_split I1101 10:54:04.767175 23007 net.cpp:151] Top shape: 1 768 24 60 (1105920) I1101 10:54:04.767182 23007 net.cpp:151] Top shape: 1 768 24 60 (1105920) I1101 10:54:04.767187 23007 net.cpp:159] Memory required for data: 292700160 I1101 10:54:04.767215 23007 net.cpp:94] Creating Layer conv9 I1101 10:54:04.767235 23007 net.cpp:428] conv9 <- concat8_concat8_0_split_0 I1101 10:54:04.767247 23007 net.cpp:402] conv9 -> conv9 I1101 10:54:04.772697 23007 net.cpp:144] Setting up conv9 I1101 10:54:04.772728 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.772734 23007 net.cpp:159] Memory required for data: 295649280 I1101 10:54:04.772773 23007 net.cpp:94] Creating Layer conv9_relu I1101 10:54:04.772783 23007 net.cpp:428] conv9_relu <- conv9 I1101 10:54:04.772809 23007 net.cpp:389] conv9_relu -> conv9 (in-place) I1101 10:54:04.773438 23007 net.cpp:144] Setting up conv9_relu I1101 10:54:04.773452 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.773458 23007 net.cpp:159] Memory required for data: 298598400 I1101 10:54:04.773483 23007 net.cpp:94] Creating Layer conv9_conv9_relu_0_split I1101 10:54:04.773490 23007 net.cpp:428] conv9_conv9_relu_0_split <- conv9 I1101 10:54:04.773501 23007 net.cpp:402] conv9_conv9_relu_0_split -> conv9_conv9_relu_0_split_0 I1101 10:54:04.773526 23007 net.cpp:402] conv9_conv9_relu_0_split -> conv9_conv9_relu_0_split_1 I1101 10:54:04.773548 23007 net.cpp:402] conv9_conv9_relu_0_split -> conv9_conv9_relu_0_split_2 I1101 10:54:04.773572 23007 net.cpp:402] conv9_conv9_relu_0_split -> conv9_conv9_relu_0_split_3 I1101 10:54:04.773579 23007 net.cpp:402] conv9_conv9_relu_0_split -> conv9_conv9_relu_0_split_4 I1101 10:54:04.773664 23007 net.cpp:144] Setting up conv9_conv9_relu_0_split I1101 10:54:04.773675 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.773694 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.773715 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.773721 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.773741 23007 net.cpp:151] Top shape: 1 512 24 60 (737280) I1101 10:54:04.773746 23007 net.cpp:159] Memory required for data: 313344000 I1101 10:54:04.773777 23007 net.cpp:94] Creating Layer conv_final I1101 10:54:04.773795 23007 net.cpp:428] conv_final <- conv9_conv9_relu_0_split_0 I1101 10:54:04.773805 23007 net.cpp:402] conv_final -> conv_final I1101 10:54:04.774983 23007 net.cpp:144] Setting up conv_final I1101 10:54:04.774998 23007 net.cpp:151] Top shape: 1 144 24 60 (207360) I1101 10:54:04.775003 23007 net.cpp:159] Memory required for data: 314173440 I1101 10:54:04.775034 23007 net.cpp:94] Creating Layer conv_final_permute I1101 10:54:04.775041 23007 net.cpp:428] conv_final_permute <- conv_final I1101 10:54:04.775065 23007 net.cpp:402] conv_final_permute -> conv_final_permute I1101 10:54:04.775240 23007 net.cpp:144] Setting up conv_final_permute I1101 10:54:04.775250 23007 net.cpp:151] Top shape: 1 24 60 144 (207360) I1101 10:54:04.775255 23007 net.cpp:159] Memory required for data: 315002880 I1101 10:54:04.775310 23007 net.cpp:94] Creating Layer slice I1101 10:54:04.775331 23007 net.cpp:428] slice <- conv_final_permute I1101 10:54:04.775357 23007 net.cpp:402] slice -> loc_pred I1101 10:54:04.775375 23007 net.cpp:402] slice -> obj_perm I1101 10:54:04.775388 23007 net.cpp:402] slice -> cls_perm I1101 10:54:04.775482 23007 net.cpp:144] Setting up slice I1101 10:54:04.775492 23007 net.cpp:151] Top shape: 1 24 60 64 (92160) I1101 10:54:04.775512 23007 net.cpp:151] Top shape: 1 24 60 16 (23040) I1101 10:54:04.775522 23007 net.cpp:151] Top shape: 1 24 60 64 (92160) I1101 10:54:04.775527 23007 net.cpp:159] Memory required for data: 315832320 I1101 10:54:04.775549 23007 net.cpp:94] Creating Layer cls_reshape I1101 10:54:04.775555 23007 net.cpp:428] cls_reshape <- cls_perm I1101 10:54:04.775565 23007 net.cpp:402] cls_reshape -> cls_reshape I1101 10:54:04.775605 23007 net.cpp:144] Setting up cls_reshape I1101 10:54:04.775616 23007 net.cpp:151] Top shape: 1 24 960 4 (92160) I1101 10:54:04.775621 23007 net.cpp:159] Memory required for data: 316200960 I1101 10:54:04.775647 23007 net.cpp:94] Creating Layer cls_pred_prob I1101 10:54:04.775653 23007 net.cpp:428] cls_pred_prob <- cls_reshape I1101 10:54:04.775676 23007 net.cpp:402] cls_pred_prob -> cls_pred_prob I1101 10:54:04.775907 23007 net.cpp:144] Setting up cls_pred_prob I1101 10:54:04.775920 23007 net.cpp:151] Top shape: 1 24 960 4 (92160) I1101 10:54:04.775926 23007 net.cpp:159] Memory required for data: 316569600 I1101 10:54:04.775935 23007 net.cpp:94] Creating Layer cls_pred I1101 10:54:04.775941 23007 net.cpp:428] cls_pred <- cls_pred_prob I1101 10:54:04.775951 23007 net.cpp:402] cls_pred -> cls_pred I1101 10:54:04.775975 23007 net.cpp:144] Setting up cls_pred I1101 10:54:04.775985 23007 net.cpp:151] Top shape: 1 24 60 64 (92160) I1101 10:54:04.775995 23007 net.cpp:159] Memory required for data: 316938240 I1101 10:54:04.776010 23007 net.cpp:94] Creating Layer obj_pred I1101 10:54:04.776016 23007 net.cpp:428] obj_pred <- obj_perm I1101 10:54:04.776026 23007 net.cpp:402] obj_pred -> obj_pred I1101 10:54:04.776211 23007 net.cpp:144] Setting up obj_pred I1101 10:54:04.776222 23007 net.cpp:151] Top shape: 1 24 60 16 (23040) I1101 10:54:04.776228 23007 net.cpp:159] Memory required for data: 317030400 I1101 10:54:04.776240 23007 net.cpp:94] Creating Layer ori_origin I1101 10:54:04.776247 23007 net.cpp:428] ori_origin <- conv9_conv9_relu_0_split_1 I1101 10:54:04.776258 23007 net.cpp:402] ori_origin -> ori_origin I1101 10:54:04.777323 23007 net.cpp:144] Setting up ori_origin I1101 10:54:04.777338 23007 net.cpp:151] Top shape: 1 32 24 60 (46080) I1101 10:54:04.777343 23007 net.cpp:159] Memory required for data: 317214720 I1101 10:54:04.777359 23007 net.cpp:94] Creating Layer ori_pred I1101 10:54:04.777366 23007 net.cpp:428] ori_pred <- ori_origin I1101 10:54:04.777375 23007 net.cpp:402] ori_pred -> ori_pred I1101 10:54:04.777468 23007 net.cpp:144] Setting up ori_pred I1101 10:54:04.777478 23007 net.cpp:151] Top shape: 1 24 60 32 (46080) I1101 10:54:04.777484 23007 net.cpp:159] Memory required for data: 317399040 I1101 10:54:04.777494 23007 net.cpp:94] Creating Layer dim_origin I1101 10:54:04.777500 23007 net.cpp:428] dim_origin <- conv9_conv9_relu_0_split_2 I1101 10:54:04.777510 23007 net.cpp:402] dim_origin -> dim_origin I1101 10:54:04.778553 23007 net.cpp:144] Setting up dim_origin I1101 10:54:04.778570 23007 net.cpp:151] Top shape: 1 48 24 60 (69120) I1101 10:54:04.778575 23007 net.cpp:159] Memory required for data: 317675520 I1101 10:54:04.778589 23007 net.cpp:94] Creating Layer dim_pred I1101 10:54:04.778596 23007 net.cpp:428] dim_pred <- dim_origin I1101 10:54:04.778606 23007 net.cpp:402] dim_pred -> dim_pred I1101 10:54:04.778712 23007 net.cpp:144] Setting up dim_pred I1101 10:54:04.778735 23007 net.cpp:151] Top shape: 1 24 60 48 (69120) I1101 10:54:04.778741 23007 net.cpp:159] Memory required for data: 317952000 I1101 10:54:04.778753 23007 net.cpp:94] Creating Layer lof_origin I1101 10:54:04.778759 23007 net.cpp:428] lof_origin <- conv9_conv9_relu_0_split_3 I1101 10:54:04.778767 23007 net.cpp:402] lof_origin -> lof_origin I1101 10:54:04.779851 23007 net.cpp:144] Setting up lof_origin I1101 10:54:04.779867 23007 net.cpp:151] Top shape: 1 64 24 60 (92160) I1101 10:54:04.779873 23007 net.cpp:159] Memory required for data: 318320640 I1101 10:54:04.779888 23007 net.cpp:94] Creating Layer lof_perm I1101 10:54:04.779896 23007 net.cpp:428] lof_perm <- lof_origin I1101 10:54:04.779906 23007 net.cpp:402] lof_perm -> lof_pred I1101 10:54:04.779999 23007 net.cpp:144] Setting up lof_perm I1101 10:54:04.780009 23007 net.cpp:151] Top shape: 1 24 60 64 (92160) I1101 10:54:04.780014 23007 net.cpp:159] Memory required for data: 318689280 I1101 10:54:04.780025 23007 net.cpp:94] Creating Layer lor_origin I1101 10:54:04.780031 23007 net.cpp:428] lor_origin <- conv9_conv9_relu_0_split_4 I1101 10:54:04.780041 23007 net.cpp:402] lor_origin -> lor_origin I1101 10:54:04.781088 23007 net.cpp:144] Setting up lor_origin I1101 10:54:04.781103 23007 net.cpp:151] Top shape: 1 64 24 60 (92160) I1101 10:54:04.781110 23007 net.cpp:159] Memory required for data: 319057920 I1101 10:54:04.781124 23007 net.cpp:94] Creating Layer lor_perm I1101 10:54:04.781131 23007 net.cpp:428] lor_perm <- lor_origin I1101 10:54:04.781141 23007 net.cpp:402] lor_perm -> lor_pred I1101 10:54:04.781262 23007 net.cpp:144] Setting up lor_perm I1101 10:54:04.781272 23007 net.cpp:151] Top shape: 1 24 60 64 (92160) I1101 10:54:04.781277 23007 net.cpp:159] Memory required for data: 319426560 I1101 10:54:04.781288 23007 net.cpp:94] Creating Layer reduce1_lane I1101 10:54:04.781294 23007 net.cpp:428] reduce1_lane <- concat8_concat8_0_split_1 I1101 10:54:04.781304 23007 net.cpp:402] reduce1_lane -> reduce1_lane I1101 10:54:04.783798 23007 net.cpp:144] Setting up reduce1_lane I1101 10:54:04.783823 23007 net.cpp:151] Top shape: 1 128 24 60 (184320) I1101 10:54:04.783829 23007 net.cpp:159] Memory required for data: 320163840 I1101 10:54:04.783848 23007 net.cpp:94] Creating Layer reduce1_lane_relu I1101 10:54:04.783855 23007 net.cpp:428] reduce1_lane_relu <- reduce1_lane I1101 10:54:04.783866 23007 net.cpp:389] reduce1_lane_relu -> reduce1_lane (in-place) I1101 10:54:04.784371 23007 net.cpp:144] Setting up reduce1_lane_relu I1101 10:54:04.784385 23007 net.cpp:151] Top shape: 1 128 24 60 (184320) I1101 10:54:04.784391 23007 net.cpp:159] Memory required for data: 320901120 I1101 10:54:04.784407 23007 net.cpp:94] Creating Layer deconv1_lane I1101 10:54:04.784415 23007 net.cpp:428] deconv1_lane <- reduce1_lane I1101 10:54:04.784426 23007 net.cpp:402] deconv1_lane -> deconv1_lane I1101 10:54:04.784678 23007 net.cpp:144] Setting up deconv1_lane I1101 10:54:04.784692 23007 net.cpp:151] Top shape: 1 64 48 120 (368640) I1101 10:54:04.784696 23007 net.cpp:159] Memory required for data: 322375680 I1101 10:54:04.784723 23007 net.cpp:94] Creating Layer deconv1_lane_relu I1101 10:54:04.784729 23007 net.cpp:428] deconv1_lane_relu <- deconv1_lane I1101 10:54:04.784739 23007 net.cpp:389] deconv1_lane_relu -> deconv1_lane (in-place) I1101 10:54:04.784915 23007 net.cpp:144] Setting up deconv1_lane_relu I1101 10:54:04.784926 23007 net.cpp:151] Top shape: 1 64 48 120 (368640) I1101 10:54:04.784932 23007 net.cpp:159] Memory required for data: 323850240 I1101 10:54:04.784943 23007 net.cpp:94] Creating Layer reorg4 I1101 10:54:04.784950 23007 net.cpp:428] reorg4 <- conv4_3_conv4_3_relu_0_split_1 I1101 10:54:04.784961 23007 net.cpp:402] reorg4 -> reorg4 I1101 10:54:04.786300 23007 net.cpp:144] Setting up reorg4 I1101 10:54:04.786316 23007 net.cpp:151] Top shape: 1 64 48 120 (368640) I1101 10:54:04.786324 23007 net.cpp:159] Memory required for data: 325324800 I1101 10:54:04.786335 23007 net.cpp:94] Creating Layer reorg4_relu I1101 10:54:04.786342 23007 net.cpp:428] reorg4_relu <- reorg4 I1101 10:54:04.786365 23007 net.cpp:389] reorg4_relu -> reorg4 (in-place) I1101 10:54:04.786559 23007 net.cpp:144] Setting up reorg4_relu I1101 10:54:04.786571 23007 net.cpp:151] Top shape: 1 64 48 120 (368640) I1101 10:54:04.786577 23007 net.cpp:159] Memory required for data: 326799360 I1101 10:54:04.786586 23007 net.cpp:94] Creating Layer concat4 I1101 10:54:04.786592 23007 net.cpp:428] concat4 <- reorg4 I1101 10:54:04.786602 23007 net.cpp:428] concat4 <- deconv1_lane I1101 10:54:04.786612 23007 net.cpp:402] concat4 -> concat4 I1101 10:54:04.786667 23007 net.cpp:144] Setting up concat4 I1101 10:54:04.786679 23007 net.cpp:151] Top shape: 1 128 48 120 (737280) I1101 10:54:04.786685 23007 net.cpp:159] Memory required for data: 329748480 I1101 10:54:04.786708 23007 net.cpp:94] Creating Layer reduce2_lane I1101 10:54:04.786715 23007 net.cpp:428] reduce2_lane <- concat4 I1101 10:54:04.786723 23007 net.cpp:402] reduce2_lane -> reduce2_lane I1101 10:54:04.788107 23007 net.cpp:144] Setting up reduce2_lane I1101 10:54:04.788123 23007 net.cpp:151] Top shape: 1 64 48 120 (368640) I1101 10:54:04.788130 23007 net.cpp:159] Memory required for data: 331223040 I1101 10:54:04.788143 23007 net.cpp:94] Creating Layer reduce2_lane_relu I1101 10:54:04.788151 23007 net.cpp:428] reduce2_lane_relu <- reduce2_lane I1101 10:54:04.788159 23007 net.cpp:389] reduce2_lane_relu -> reduce2_lane (in-place) I1101 10:54:04.788637 23007 net.cpp:144] Setting up reduce2_lane_relu I1101 10:54:04.788651 23007 net.cpp:151] Top shape: 1 64 48 120 (368640) I1101 10:54:04.788671 23007 net.cpp:159] Memory required for data: 332697600 I1101 10:54:04.788682 23007 net.cpp:94] Creating Layer deconv2_lane I1101 10:54:04.788689 23007 net.cpp:428] deconv2_lane <- reduce2_lane I1101 10:54:04.788700 23007 net.cpp:402] deconv2_lane -> deconv2_lane I1101 10:54:04.788946 23007 net.cpp:144] Setting up deconv2_lane I1101 10:54:04.788959 23007 net.cpp:151] Top shape: 1 32 96 240 (737280) I1101 10:54:04.788964 23007 net.cpp:159] Memory required for data: 335646720 I1101 10:54:04.788976 23007 net.cpp:94] Creating Layer deconv2_lane_relu I1101 10:54:04.788982 23007 net.cpp:428] deconv2_lane_relu <- deconv2_lane I1101 10:54:04.788991 23007 net.cpp:389] deconv2_lane_relu -> deconv2_lane (in-place) I1101 10:54:04.789494 23007 net.cpp:144] Setting up deconv2_lane_relu I1101 10:54:04.789507 23007 net.cpp:151] Top shape: 1 32 96 240 (737280) I1101 10:54:04.789512 23007 net.cpp:159] Memory required for data: 338595840 I1101 10:54:04.789525 23007 net.cpp:94] Creating Layer reorg3 I1101 10:54:04.789532 23007 net.cpp:428] reorg3 <- conv3_3_conv3_3_relu_0_split_1 I1101 10:54:04.789542 23007 net.cpp:402] reorg3 -> reorg3 I1101 10:54:04.790568 23007 net.cpp:144] Setting up reorg3 I1101 10:54:04.790585 23007 net.cpp:151] Top shape: 1 32 96 240 (737280) I1101 10:54:04.790591 23007 net.cpp:159] Memory required for data: 341544960 I1101 10:54:04.790603 23007 net.cpp:94] Creating Layer reorg3_relu I1101 10:54:04.790611 23007 net.cpp:428] reorg3_relu <- reorg3 I1101 10:54:04.790619 23007 net.cpp:389] reorg3_relu -> reorg3 (in-place) I1101 10:54:04.790804 23007 net.cpp:144] Setting up reorg3_relu I1101 10:54:04.790817 23007 net.cpp:151] Top shape: 1 32 96 240 (737280) I1101 10:54:04.790822 23007 net.cpp:159] Memory required for data: 344494080 I1101 10:54:04.790832 23007 net.cpp:94] Creating Layer concat3 I1101 10:54:04.790836 23007 net.cpp:428] concat3 <- reorg3 I1101 10:54:04.790845 23007 net.cpp:428] concat3 <- deconv2_lane I1101 10:54:04.790854 23007 net.cpp:402] concat3 -> concat3 I1101 10:54:04.790880 23007 net.cpp:144] Setting up concat3 I1101 10:54:04.790907 23007 net.cpp:151] Top shape: 1 64 96 240 (1474560) I1101 10:54:04.790913 23007 net.cpp:159] Memory required for data: 350392320 I1101 10:54:04.790925 23007 net.cpp:94] Creating Layer reduce3_lane I1101 10:54:04.790931 23007 net.cpp:428] reduce3_lane <- concat3 I1101 10:54:04.790940 23007 net.cpp:402] reduce3_lane -> reduce3_lane I1101 10:54:04.792011 23007 net.cpp:144] Setting up reduce3_lane I1101 10:54:04.792040 23007 net.cpp:151] Top shape: 1 32 96 240 (737280) I1101 10:54:04.792060 23007 net.cpp:159] Memory required for data: 353341440 I1101 10:54:04.792073 23007 net.cpp:94] Creating Layer reduce3_lane_relu I1101 10:54:04.792080 23007 net.cpp:428] reduce3_lane_relu <- reduce3_lane I1101 10:54:04.792089 23007 net.cpp:389] reduce3_lane_relu -> reduce3_lane (in-place) I1101 10:54:04.792289 23007 net.cpp:144] Setting up reduce3_lane_relu I1101 10:54:04.792301 23007 net.cpp:151] Top shape: 1 32 96 240 (737280) I1101 10:54:04.792306 23007 net.cpp:159] Memory required for data: 356290560 I1101 10:54:04.792330 23007 net.cpp:94] Creating Layer deconv3_lane I1101 10:54:04.792336 23007 net.cpp:428] deconv3_lane <- reduce3_lane I1101 10:54:04.792361 23007 net.cpp:402] deconv3_lane -> deconv3_lane I1101 10:54:04.793166 23007 net.cpp:144] Setting up deconv3_lane I1101 10:54:04.793182 23007 net.cpp:151] Top shape: 1 16 192 480 (1474560) I1101 10:54:04.793190 23007 net.cpp:159] Memory required for data: 362188800 I1101 10:54:04.793229 23007 net.cpp:94] Creating Layer deconv3_lane_relu I1101 10:54:04.793237 23007 net.cpp:428] deconv3_lane_relu <- deconv3_lane I1101 10:54:04.793246 23007 net.cpp:389] deconv3_lane_relu -> deconv3_lane (in-place) I1101 10:54:04.793758 23007 net.cpp:144] Setting up deconv3_lane_relu I1101 10:54:04.793773 23007 net.cpp:151] Top shape: 1 16 192 480 (1474560) I1101 10:54:04.793779 23007 net.cpp:159] Memory required for data: 368087040 I1101 10:54:04.793790 23007 net.cpp:94] Creating Layer reorg2 I1101 10:54:04.793797 23007 net.cpp:428] reorg2 <- conv2_conv2_relu_0_split_1 I1101 10:54:04.793807 23007 net.cpp:402] reorg2 -> reorg2 I1101 10:54:04.794873 23007 net.cpp:144] Setting up reorg2 I1101 10:54:04.794889 23007 net.cpp:151] Top shape: 1 16 192 480 (1474560) I1101 10:54:04.794896 23007 net.cpp:159] Memory required for data: 373985280 I1101 10:54:04.794909 23007 net.cpp:94] Creating Layer reorg2_relu I1101 10:54:04.794914 23007 net.cpp:428] reorg2_relu <- reorg2 I1101 10:54:04.794924 23007 net.cpp:389] reorg2_relu -> reorg2 (in-place) I1101 10:54:04.795125 23007 net.cpp:144] Setting up reorg2_relu I1101 10:54:04.795136 23007 net.cpp:151] Top shape: 1 16 192 480 (1474560) I1101 10:54:04.795156 23007 net.cpp:159] Memory required for data: 379883520 I1101 10:54:04.795164 23007 net.cpp:94] Creating Layer concat2 I1101 10:54:04.795171 23007 net.cpp:428] concat2 <- reorg2 I1101 10:54:04.795179 23007 net.cpp:428] concat2 <- deconv3_lane I1101 10:54:04.795188 23007 net.cpp:402] concat2 -> concat2 I1101 10:54:04.795220 23007 net.cpp:144] Setting up concat2 I1101 10:54:04.795230 23007 net.cpp:151] Top shape: 1 32 192 480 (2949120) I1101 10:54:04.795248 23007 net.cpp:159] Memory required for data: 391680000 I1101 10:54:04.795259 23007 net.cpp:94] Creating Layer reduce4_lane I1101 10:54:04.795265 23007 net.cpp:428] reduce4_lane <- concat2 I1101 10:54:04.795275 23007 net.cpp:402] reduce4_lane -> reduce4_lane I1101 10:54:04.796396 23007 net.cpp:144] Setting up reduce4_lane I1101 10:54:04.796412 23007 net.cpp:151] Top shape: 1 16 192 480 (1474560) I1101 10:54:04.796418 23007 net.cpp:159] Memory required for data: 397578240 I1101 10:54:04.796432 23007 net.cpp:94] Creating Layer reduce4_lane_relu I1101 10:54:04.796438 23007 net.cpp:428] reduce4_lane_relu <- reduce4_lane I1101 10:54:04.796447 23007 net.cpp:389] reduce4_lane_relu -> reduce4_lane (in-place) I1101 10:54:04.796623 23007 net.cpp:144] Setting up reduce4_lane_relu I1101 10:54:04.796635 23007 net.cpp:151] Top shape: 1 16 192 480 (1474560) I1101 10:54:04.796640 23007 net.cpp:159] Memory required for data: 403476480 I1101 10:54:04.796651 23007 net.cpp:94] Creating Layer deconv4_lane I1101 10:54:04.796658 23007 net.cpp:428] deconv4_lane <- reduce4_lane I1101 10:54:04.796681 23007 net.cpp:402] deconv4_lane -> deconv4_lane I1101 10:54:04.797560 23007 net.cpp:144] Setting up deconv4_lane I1101 10:54:04.797590 23007 net.cpp:151] Top shape: 1 8 384 960 (2949120) I1101 10:54:04.797596 23007 net.cpp:159] Memory required for data: 415272960 I1101 10:54:04.797610 23007 net.cpp:94] Creating Layer deconv4_lane_relu I1101 10:54:04.797617 23007 net.cpp:428] deconv4_lane_relu <- deconv4_lane I1101 10:54:04.797626 23007 net.cpp:389] deconv4_lane_relu -> deconv4_lane (in-place) I1101 10:54:04.798153 23007 net.cpp:144] Setting up deconv4_lane_relu I1101 10:54:04.798168 23007 net.cpp:151] Top shape: 1 8 384 960 (2949120) I1101 10:54:04.798174 23007 net.cpp:159] Memory required for data: 427069440 I1101 10:54:04.798187 23007 net.cpp:94] Creating Layer reorg1 I1101 10:54:04.798193 23007 net.cpp:428] reorg1 <- conv1_conv1_relu_0_split_1 I1101 10:54:04.798218 23007 net.cpp:402] reorg1 -> reorg1 I1101 10:54:04.799254 23007 net.cpp:144] Setting up reorg1 I1101 10:54:04.799269 23007 net.cpp:151] Top shape: 1 8 384 960 (2949120) I1101 10:54:04.799276 23007 net.cpp:159] Memory required for data: 438865920 I1101 10:54:04.799288 23007 net.cpp:94] Creating Layer reorg1_relu I1101 10:54:04.799294 23007 net.cpp:428] reorg1_relu <- reorg1 I1101 10:54:04.799304 23007 net.cpp:389] reorg1_relu -> reorg1 (in-place) I1101 10:54:04.799506 23007 net.cpp:144] Setting up reorg1_relu I1101 10:54:04.799518 23007 net.cpp:151] Top shape: 1 8 384 960 (2949120) I1101 10:54:04.799523 23007 net.cpp:159] Memory required for data: 450662400 I1101 10:54:04.799533 23007 net.cpp:94] Creating Layer concat1 I1101 10:54:04.799540 23007 net.cpp:428] concat1 <- reorg1 I1101 10:54:04.799547 23007 net.cpp:428] concat1 <- deconv4_lane I1101 10:54:04.799557 23007 net.cpp:402] concat1 -> concat1 I1101 10:54:04.799583 23007 net.cpp:144] Setting up concat1 I1101 10:54:04.799597 23007 net.cpp:151] Top shape: 1 16 384 960 (5898240) I1101 10:54:04.799602 23007 net.cpp:159] Memory required for data: 474255360 I1101 10:54:04.799614 23007 net.cpp:94] Creating Layer conv_out I1101 10:54:04.799620 23007 net.cpp:428] conv_out <- concat1 I1101 10:54:04.799629 23007 net.cpp:402] conv_out -> conv_out I1101 10:54:04.800640 23007 net.cpp:144] Setting up conv_out I1101 10:54:04.800655 23007 net.cpp:151] Top shape: 1 4 384 960 (1474560) I1101 10:54:04.800662 23007 net.cpp:159] Memory required for data: 480153600 I1101 10:54:04.800673 23007 net.cpp:94] Creating Layer seg_prob I1101 10:54:04.800681 23007 net.cpp:428] seg_prob <- conv_out I1101 10:54:04.800690 23007 net.cpp:402] seg_prob -> seg_prob I1101 10:54:04.800940 23007 net.cpp:144] Setting up seg_prob I1101 10:54:04.800954 23007 net.cpp:151] Top shape: 1 4 384 960 (1474560) I1101 10:54:04.800961 23007 net.cpp:159] Memory required for data: 486051840 I1101 10:54:04.800966 23007 net.cpp:222] seg_prob does not need backward computation. I1101 10:54:04.800971 23007 net.cpp:222] conv_out does not need backward computation. I1101 10:54:04.800976 23007 net.cpp:222] concat1 does not need backward computation. I1101 10:54:04.800982 23007 net.cpp:222] reorg1_relu does not need backward computation. I1101 10:54:04.800987 23007 net.cpp:222] reorg1 does not need backward computation. I1101 10:54:04.800992 23007 net.cpp:222] deconv4_lane_relu does not need backward computation. I1101 10:54:04.800997 23007 net.cpp:222] deconv4_lane does not need backward computation. I1101 10:54:04.801002 23007 net.cpp:222] reduce4_lane_relu does not need backward computation. I1101 10:54:04.801007 23007 net.cpp:222] reduce4_lane does not need backward computation. I1101 10:54:04.801025 23007 net.cpp:222] concat2 does not need backward computation. I1101 10:54:04.801031 23007 net.cpp:222] reorg2_relu does not need backward computation. I1101 10:54:04.801038 23007 net.cpp:222] reorg2 does not need backward computation. I1101 10:54:04.801045 23007 net.cpp:222] deconv3_lane_relu does not need backward computation. I1101 10:54:04.801051 23007 net.cpp:222] deconv3_lane does not need backward computation. I1101 10:54:04.801056 23007 net.cpp:222] reduce3_lane_relu does not need backward computation. I1101 10:54:04.801061 23007 net.cpp:222] reduce3_lane does not need backward computation. I1101 10:54:04.801066 23007 net.cpp:222] concat3 does not need backward computation. I1101 10:54:04.801072 23007 net.cpp:222] reorg3_relu does not need backward computation. I1101 10:54:04.801077 23007 net.cpp:222] reorg3 does not need backward computation. I1101 10:54:04.801082 23007 net.cpp:222] deconv2_lane_relu does not need backward computation. I1101 10:54:04.801087 23007 net.cpp:222] deconv2_lane does not need backward computation. I1101 10:54:04.801093 23007 net.cpp:222] reduce2_lane_relu does not need backward computation. I1101 10:54:04.801098 23007 net.cpp:222] reduce2_lane does not need backward computation. I1101 10:54:04.801105 23007 net.cpp:222] concat4 does not need backward computation. I1101 10:54:04.801111 23007 net.cpp:222] reorg4_relu does not need backward computation. I1101 10:54:04.801116 23007 net.cpp:222] reorg4 does not need backward computation. I1101 10:54:04.801122 23007 net.cpp:222] deconv1_lane_relu does not need backward computation. I1101 10:54:04.801141 23007 net.cpp:222] deconv1_lane does not need backward computation. I1101 10:54:04.801146 23007 net.cpp:222] reduce1_lane_relu does not need backward computation. I1101 10:54:04.801152 23007 net.cpp:222] reduce1_lane does not need backward computation. I1101 10:54:04.801157 23007 net.cpp:222] lor_perm does not need backward computation. I1101 10:54:04.801163 23007 net.cpp:222] lor_origin does not need backward computation. I1101 10:54:04.801168 23007 net.cpp:222] lof_perm does not need backward computation. I1101 10:54:04.801174 23007 net.cpp:222] lof_origin does not need backward computation. I1101 10:54:04.801182 23007 net.cpp:222] dim_pred does not need backward computation. I1101 10:54:04.801187 23007 net.cpp:222] dim_origin does not need backward computation. I1101 10:54:04.801193 23007 net.cpp:222] ori_pred does not need backward computation. I1101 10:54:04.801198 23007 net.cpp:222] ori_origin does not need backward computation. I1101 10:54:04.801204 23007 net.cpp:222] obj_pred does not need backward computation. I1101 10:54:04.801209 23007 net.cpp:222] cls_pred does not need backward computation. I1101 10:54:04.801215 23007 net.cpp:222] cls_pred_prob does not need backward computation. I1101 10:54:04.801234 23007 net.cpp:222] cls_reshape does not need backward computation. I1101 10:54:04.801239 23007 net.cpp:222] slice does not need backward computation. I1101 10:54:04.801260 23007 net.cpp:222] conv_final_permute does not need backward computation. I1101 10:54:04.801266 23007 net.cpp:222] conv_final does not need backward computation. I1101 10:54:04.801272 23007 net.cpp:222] conv9_conv9_relu_0_split does not need backward computation. I1101 10:54:04.801278 23007 net.cpp:222] conv9_relu does not need backward computation. I1101 10:54:04.801283 23007 net.cpp:222] conv9 does not need backward computation. I1101 10:54:04.801290 23007 net.cpp:222] concat8_concat8_0_split does not need backward computation. I1101 10:54:04.801295 23007 net.cpp:222] concat8 does not need backward computation. I1101 10:54:04.801301 23007 net.cpp:222] conv7_2_relu does not need backward computation. I1101 10:54:04.801319 23007 net.cpp:222] conv7_2 does not need backward computation. I1101 10:54:04.801326 23007 net.cpp:222] conv7_1_relu does not need backward computation. I1101 10:54:04.801332 23007 net.cpp:222] conv7_1 does not need backward computation. I1101 10:54:04.801337 23007 net.cpp:222] conv6_5_relu does not need backward computation. I1101 10:54:04.801343 23007 net.cpp:222] conv6_5 does not need backward computation. I1101 10:54:04.801348 23007 net.cpp:222] conv6_4_relu does not need backward computation. I1101 10:54:04.801355 23007 net.cpp:222] conv6_4 does not need backward computation. I1101 10:54:04.801360 23007 net.cpp:222] conv6_3_relu does not need backward computation. I1101 10:54:04.801367 23007 net.cpp:222] conv6_3 does not need backward computation. I1101 10:54:04.801371 23007 net.cpp:222] conv6_2_relu does not need backward computation. I1101 10:54:04.801376 23007 net.cpp:222] conv6_2 does not need backward computation. I1101 10:54:04.801381 23007 net.cpp:222] conv6_1_relu does not need backward computation. I1101 10:54:04.801388 23007 net.cpp:222] conv6_1_nodilate does not need backward computation. I1101 10:54:04.801393 23007 net.cpp:222] pool5 does not need backward computation. I1101 10:54:04.801398 23007 net.cpp:222] conv5_5_conv5_5_relu_0_split does not need backward computation. I1101 10:54:04.801405 23007 net.cpp:222] conv5_5_relu does not need backward computation. I1101 10:54:04.801411 23007 net.cpp:222] conv5_5 does not need backward computation. I1101 10:54:04.801416 23007 net.cpp:222] conv5_4_relu does not need backward computation. I1101 10:54:04.801422 23007 net.cpp:222] conv5_4 does not need backward computation. I1101 10:54:04.801427 23007 net.cpp:222] conv5_3_relu does not need backward computation. I1101 10:54:04.801432 23007 net.cpp:222] conv5_3 does not need backward computation. I1101 10:54:04.801439 23007 net.cpp:222] conv5_2_relu does not need backward computation. I1101 10:54:04.801443 23007 net.cpp:222] conv5_2 does not need backward computation. I1101 10:54:04.801448 23007 net.cpp:222] conv5_1_relu does not need backward computation. I1101 10:54:04.801455 23007 net.cpp:222] conv5_1 does not need backward computation. I1101 10:54:04.801460 23007 net.cpp:222] pool4 does not need backward computation. I1101 10:54:04.801465 23007 net.cpp:222] conv4_3_conv4_3_relu_0_split does not need backward computation. I1101 10:54:04.801471 23007 net.cpp:222] conv4_3_relu does not need backward computation. I1101 10:54:04.801492 23007 net.cpp:222] conv4_3 does not need backward computation. I1101 10:54:04.801497 23007 net.cpp:222] conv4_2_relu does not need backward computation. I1101 10:54:04.801517 23007 net.cpp:222] conv4_2 does not need backward computation. I1101 10:54:04.801522 23007 net.cpp:222] conv4_1_relu does not need backward computation. I1101 10:54:04.801527 23007 net.cpp:222] conv4_1 does not need backward computation. I1101 10:54:04.801533 23007 net.cpp:222] pool3 does not need backward computation. I1101 10:54:04.801538 23007 net.cpp:222] conv3_3_conv3_3_relu_0_split does not need backward computation. I1101 10:54:04.801546 23007 net.cpp:222] conv3_3_relu does not need backward computation. I1101 10:54:04.801553 23007 net.cpp:222] conv3_3 does not need backward computation. I1101 10:54:04.801558 23007 net.cpp:222] conv3_2_relu does not need backward computation. I1101 10:54:04.801563 23007 net.cpp:222] conv3_2 does not need backward computation. I1101 10:54:04.801568 23007 net.cpp:222] conv3_1_relu does not need backward computation. I1101 10:54:04.801573 23007 net.cpp:222] conv3_1 does not need backward computation. I1101 10:54:04.801579 23007 net.cpp:222] pool2 does not need backward computation. I1101 10:54:04.801584 23007 net.cpp:222] conv2_conv2_relu_0_split does not need backward computation. I1101 10:54:04.801590 23007 net.cpp:222] conv2_relu does not need backward computation. I1101 10:54:04.801595 23007 net.cpp:222] conv2 does not need backward computation. I1101 10:54:04.801601 23007 net.cpp:222] pool1 does not need backward computation. I1101 10:54:04.801609 23007 net.cpp:222] conv1_conv1_relu_0_split does not need backward computation. I1101 10:54:04.801614 23007 net.cpp:222] conv1_relu does not need backward computation. I1101 10:54:04.801620 23007 net.cpp:222] conv1 does not need backward computation. I1101 10:54:04.801625 23007 net.cpp:222] data_scale does not need backward computation. I1101 10:54:04.801631 23007 net.cpp:222] data_perm does not need backward computation. I1101 10:54:04.801636 23007 net.cpp:222] input does not need backward computation. I1101 10:54:04.801641 23007 net.cpp:264] This network produces output cls_pred I1101 10:54:04.801692 23007 net.cpp:264] This network produces output dim_pred I1101 10:54:04.801700 23007 net.cpp:264] This network produces output loc_pred I1101 10:54:04.801707 23007 net.cpp:264] This network produces output lof_pred I1101 10:54:04.801712 23007 net.cpp:264] This network produces output lor_pred I1101 10:54:04.801718 23007 net.cpp:264] This network produces output obj_pred I1101 10:54:04.801723 23007 net.cpp:264] This network produces output ori_pred I1101 10:54:04.801741 23007 net.cpp:264] This network produces output seg_prob I1101 10:54:04.801811 23007 net.cpp:277] Network initialization done. I1101 10:54:04.936751 23007 common.cpp:177] Device id: 0 I1101 10:54:04.936771 23007 common.cpp:178] Major revision number: 6 I1101 10:54:04.936776 23007 common.cpp:179] Minor revision number: 1 I1101 10:54:04.936780 23007 common.cpp:180] Name: GeForce GTX 1080 I1101 10:54:04.936800 23007 common.cpp:181] Total global memory: 8499691520 I1101 10:54:04.936803 23007 common.cpp:182] Total shared memory per block: 49152 I1101 10:54:04.936807 23007 common.cpp:183] Total registers per block: 65536 I1101 10:54:04.936811 23007 common.cpp:184] Warp size: 32 I1101 10:54:04.936815 23007 common.cpp:185] Maximum memory pitch: 2147483647 I1101 10:54:04.936820 23007 common.cpp:186] Maximum threads per block: 1024 I1101 10:54:04.936839 23007 common.cpp:187] Maximum dimension of block: 1024, 1024, 64 I1101 10:54:04.936846 23007 common.cpp:190] Maximum dimension of grid: 2147483647, 65535, 65535 I1101 10:54:04.936863 23007 common.cpp:193] Clock rate: 1809500 I1101 10:54:04.936868 23007 common.cpp:194] Total constant memory: 65536 I1101 10:54:04.936887 23007 common.cpp:195] Texture alignment: 512 I1101 10:54:04.936893 23007 common.cpp:196] Concurrent copy and execution: Yes I1101 10:54:04.936897 23007 common.cpp:198] Number of multiprocessors: 20 I1101 10:54:04.936902 23007 common.cpp:199] Kernel execution timeout: Yes I1101 10:54:04.942518 23007 net.cpp:52] Initializing net from parameters: name: "darknet-16c-16x-3d multitask TEST 960x384, offset L3:440, L4: 312, RM DET" state { phase: TEST } layer { name: "input" type: "Input" top: "data" input_param { shape { dim: 1 dim: 480 dim: 640 dim: 3 } } } layer { name: "data_perm" type: "Permute" bottom: "data" top: "data_perm" permute_param { order: 0 order: 3 order: 1 order: 2 } } layer { name: "scale_data_lane" type: "Power" bottom: "data_perm" top: "scale_data_lane" propagate_down: false power_param { power: 1 scale: 0.00392157 shift: 0 } } layer { name: "conv1" type: "Convolution" bottom: "scale_data_lane" top: "conv1" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv1_bn" type: "BatchNorm" bottom: "conv1" top: "conv1" batch_norm_param { eps: 1e-06 } } layer { name: "conv1_scale" type: "Scale" bottom: "conv1" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv1_relu" type: "ReLU" bottom: "conv1" top: "conv1" relu_param { negative_slope: 0 } } layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv2_bn" type: "BatchNorm" bottom: "conv2" top: "conv2" batch_norm_param { eps: 1e-06 } } layer { name: "conv2_scale" type: "Scale" bottom: "conv2" top: "conv2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv2_relu" type: "ReLU" bottom: "conv2" top: "conv2" relu_param { negative_slope: 0 } } layer { name: "pool2" type: "Pooling" bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv3_1_bn" type: "BatchNorm" bottom: "conv3_1" top: "conv3_1" batch_norm_param { eps: 1e-06 } } layer { name: "conv3_1_scale" type: "Scale" bottom: "conv3_1" top: "conv3_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv3_1_relu" type: "ReLU" bottom: "conv3_1" top: "conv3_1" relu_param { negative_slope: 0 } } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv3_2_bn" type: "BatchNorm" bottom: "conv3_2" top: "conv3_2" batch_norm_param { eps: 1e-06 } } layer { name: "conv3_2_scale" type: "Scale" bottom: "conv3_2" top: "conv3_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv3_2_relu" type: "ReLU" bottom: "conv3_2" top: "conv3_2" relu_param { negative_slope: 0 } } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv3_3_bn" type: "BatchNorm" bottom: "conv3_3" top: "conv3_3" batch_norm_param { eps: 1e-06 } } layer { name: "conv3_3_scale" type: "Scale" bottom: "conv3_3" top: "conv3_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv3_3_relu" type: "ReLU" bottom: "conv3_3" top: "conv3_3" relu_param { negative_slope: 0 } } layer { name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv4_1_bn" type: "BatchNorm" bottom: "conv4_1" top: "conv4_1" batch_norm_param { eps: 1e-06 } } layer { name: "conv4_1_scale" type: "Scale" bottom: "conv4_1" top: "conv4_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv4_1_relu" type: "ReLU" bottom: "conv4_1" top: "conv4_1" relu_param { negative_slope: 0 } } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv4_2_bn" type: "BatchNorm" bottom: "conv4_2" top: "conv4_2" batch_norm_param { eps: 1e-06 } } layer { name: "conv4_2_scale" type: "Scale" bottom: "conv4_2" top: "conv4_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv4_2_relu" type: "ReLU" bottom: "conv4_2" top: "conv4_2" relu_param { negative_slope: 0 } } layer { name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv4_3_bn" type: "BatchNorm" bottom: "conv4_3" top: "conv4_3" batch_norm_param { eps: 1e-06 } } layer { name: "conv4_3_scale" type: "Scale" bottom: "conv4_3" top: "conv4_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv4_3_relu" type: "ReLU" bottom: "conv4_3" top: "conv4_3" relu_param { negative_slope: 0 } } layer { name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 256 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv5_1_bn" type: "BatchNorm" bottom: "conv5_1" top: "conv5_1" batch_norm_param { eps: 1e-06 } } layer { name: "conv5_1_scale" type: "Scale" bottom: "conv5_1" top: "conv5_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv5_1_relu" type: "ReLU" bottom: "conv5_1" top: "conv5_1" relu_param { negative_slope: 0 } } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 128 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv5_2_bn" type: "BatchNorm" bottom: "conv5_2" top: "conv5_2" batch_norm_param { eps: 1e-06 } } layer { name: "conv5_2_scale" type: "Scale" bottom: "conv5_2" top: "conv5_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv5_2_relu" type: "ReLU" bottom: "conv5_2" top: "conv5_2" relu_param { negative_slope: 0 } } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 256 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv5_3_bn" type: "BatchNorm" bottom: "conv5_3" top: "conv5_3" batch_norm_param { eps: 1e-06 } } layer { name: "conv5_3_scale" type: "Scale" bottom: "conv5_3" top: "conv5_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv5_3_relu" type: "ReLU" bottom: "conv5_3" top: "conv5_3" relu_param { negative_slope: 0 } } layer { name: "conv5_4" type: "Convolution" bottom: "conv5_3" top: "conv5_4" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 128 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv5_4_bn" type: "BatchNorm" bottom: "conv5_4" top: "conv5_4" batch_norm_param { eps: 1e-06 } } layer { name: "conv5_4_scale" type: "Scale" bottom: "conv5_4" top: "conv5_4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv5_4_relu" type: "ReLU" bottom: "conv5_4" top: "conv5_4" relu_param { negative_slope: 0 } } layer { name: "conv5_5" type: "Convolution" bottom: "conv5_4" top: "conv5_5" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 256 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv5_5_bn" type: "BatchNorm" bottom: "conv5_5" top: "conv5_5" batch_norm_param { eps: 1e-06 } } layer { name: "conv5_5_scale" type: "Scale" bottom: "conv5_5" top: "conv5_5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv5_5_relu" type: "ReLU" bottom: "conv5_5" top: "conv5_5" relu_param { negative_slope: 0 } } layer { name: "pool5" type: "Pooling" bottom: "conv5_5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "conv6_1" type: "Convolution" bottom: "pool5" top: "conv6_1" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 512 bias_term: false pad: 2 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 2 } } layer { name: "conv6_1_bn" type: "BatchNorm" bottom: "conv6_1" top: "conv6_1" batch_norm_param { eps: 1e-06 } } layer { name: "conv6_1_scale" type: "Scale" bottom: "conv6_1" top: "conv6_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv6_1_relu" type: "ReLU" bottom: "conv6_1" top: "conv6_1" relu_param { negative_slope: 0 } } layer { name: "conv6_2" type: "Convolution" bottom: "conv6_1" top: "conv6_2" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 256 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv6_2_bn" type: "BatchNorm" bottom: "conv6_2" top: "conv6_2" batch_norm_param { eps: 1e-06 } } layer { name: "conv6_2_scale" type: "Scale" bottom: "conv6_2" top: "conv6_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv6_2_relu" type: "ReLU" bottom: "conv6_2" top: "conv6_2" relu_param { negative_slope: 0 } } layer { name: "conv6_3" type: "Convolution" bottom: "conv6_2" top: "conv6_3" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv6_3_bn" type: "BatchNorm" bottom: "conv6_3" top: "conv6_3" batch_norm_param { eps: 1e-06 } } layer { name: "conv6_3_scale" type: "Scale" bottom: "conv6_3" top: "conv6_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv6_3_relu" type: "ReLU" bottom: "conv6_3" top: "conv6_3" relu_param { negative_slope: 0 } } layer { name: "conv6_4" type: "Convolution" bottom: "conv6_3" top: "conv6_4" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 256 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv6_4_bn" type: "BatchNorm" bottom: "conv6_4" top: "conv6_4" batch_norm_param { eps: 1e-06 } } layer { name: "conv6_4_scale" type: "Scale" bottom: "conv6_4" top: "conv6_4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv6_4_relu" type: "ReLU" bottom: "conv6_4" top: "conv6_4" relu_param { negative_slope: 0 } } layer { name: "conv6_5" type: "Convolution" bottom: "conv6_4" top: "conv6_5" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv6_5_bn" type: "BatchNorm" bottom: "conv6_5" top: "conv6_5" batch_norm_param { eps: 1e-06 } } layer { name: "conv6_5_scale" type: "Scale" bottom: "conv6_5" top: "conv6_5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv6_5_relu" type: "ReLU" bottom: "conv6_5" top: "conv6_5" relu_param { negative_slope: 0 } } layer { name: "conv7_1" type: "Convolution" bottom: "conv6_5" top: "conv7_1" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv7_1_bn" type: "BatchNorm" bottom: "conv7_1" top: "conv7_1" batch_norm_param { eps: 1e-06 } } layer { name: "conv7_1_scale" type: "Scale" bottom: "conv7_1" top: "conv7_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv7_1_relu" type: "ReLU" bottom: "conv7_1" top: "conv7_1" relu_param { negative_slope: 0 } } layer { name: "conv7_2" type: "Convolution" bottom: "conv7_1" top: "conv7_2" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } dilation: 1 } } layer { name: "conv7_2_bn" type: "BatchNorm" bottom: "conv7_2" top: "conv7_2" batch_norm_param { eps: 1e-06 } } layer { name: "conv7_2_scale" type: "Scale" bottom: "conv7_2" top: "conv7_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 1 decay_mult: 1 } scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "conv7_2_relu" type: "ReLU" bottom: "conv7_2" top: "conv7_2" relu_param { negative_slope: 0 } } layer { name: "concat8" type: "Concat" bottom: "conv5_5" bottom: "conv7_2" top: "concat8" concat_param { axis: 1 } } layer { name: "reduce1_lane" type: "Convolution" bottom: "concat8" top: "reduce1_lane" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } layer { name: "reduce1_lane_bn" type: "BatchNorm" bottom: "reduce1_lane" top: "reduce1_lane" batch_norm_param { eps: 1e-06 } } layer { name: "reduce1_lane_scale" type: "Scale" bottom: "reduce1_lane" top: "reduce1_lane" scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "reduce1_lane_relu" type: "ReLU" bottom: "reduce1_lane" top: "reduce1_lane" relu_param { negative_slope: 0 } } layer { name: "deconv1_lane" type: "Deconvolution" bottom: "reduce1_lane" top: "deconv1_lane" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 64 pad: 0 kernel_size: 2 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "deconv1_lane_bn" type: "BatchNorm" bottom: "deconv1_lane" top: "deconv1_lane" batch_norm_param { eps: 1e-06 } } layer { name: "deconv1_lane_scale" type: "Scale" bottom: "deconv1_lane" top: "deconv1_lane" scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "deconv1_lane_relu" type: "ReLU" bottom: "deconv1_lane" top: "deconv1_lane" relu_param { negative_slope: 0 } } layer { name: "reorg4" type: "Convolution" bottom: "conv4_3" top: "reorg4" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } layer { name: "reorg4_relu" type: "ReLU" bottom: "reorg4" top: "reorg4" relu_param { negative_slope: 0 } } layer { name: "concat4" type: "Concat" bottom: "reorg4" bottom: "deconv1_lane" top: "concat4" concat_param { axis: 1 } } layer { name: "reduce2_lane" type: "Convolution" bottom: "concat4" top: "reduce2_lane" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } layer { name: "reduce2_lane_bn" type: "BatchNorm" bottom: "reduce2_lane" top: "reduce2_lane" batch_norm_param { eps: 1e-06 } } layer { name: "reduce2_lane_scale" type: "Scale" bottom: "reduce2_lane" top: "reduce2_lane" scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "reduce2_lane_relu" type: "ReLU" bottom: "reduce2_lane" top: "reduce2_lane" relu_param { negative_slope: 0 } } layer { name: "deconv2_lane" type: "Deconvolution" bottom: "reduce2_lane" top: "deconv2_lane" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 32 pad: 0 kernel_size: 2 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "deconv2_lane_bn" type: "BatchNorm" bottom: "deconv2_lane" top: "deconv2_lane" batch_norm_param { eps: 1e-06 } } layer { name: "deconv2_lane_scale" type: "Scale" bottom: "deconv2_lane" top: "deconv2_lane" scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "deconv2_lane_relu" type: "ReLU" bottom: "deconv2_lane" top: "deconv2_lane" relu_param { negative_slope: 0 } } layer { name: "reorg3" type: "Convolution" bottom: "conv3_3" top: "reorg3" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } layer { name: "reorg3_relu" type: "ReLU" bottom: "reorg3" top: "reorg3" relu_param { negative_slope: 0 } } layer { name: "concat3" type: "Concat" bottom: "reorg3" bottom: "deconv2_lane" top: "concat3" concat_param { axis: 1 } } layer { name: "reduce3_lane" type: "Convolution" bottom: "concat3" top: "reduce3_lane" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } layer { name: "reduce3_lane_bn" type: "BatchNorm" bottom: "reduce3_lane" top: "reduce3_lane" batch_norm_param { eps: 1e-06 } } layer { name: "reduce3_lane_scale" type: "Scale" bottom: "reduce3_lane" top: "reduce3_lane" scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "reduce3_lane_relu" type: "ReLU" bottom: "reduce3_lane" top: "reduce3_lane" relu_param { negative_slope: 0 } } layer { name: "deconv3_lane" type: "Deconvolution" bottom: "reduce3_lane" top: "deconv3_lane" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 16 pad: 0 kernel_size: 2 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "deconv3_lane_bn" type: "BatchNorm" bottom: "deconv3_lane" top: "deconv3_lane" batch_norm_param { eps: 1e-06 } } layer { name: "deconv3_lane_scale" type: "Scale" bottom: "deconv3_lane" top: "deconv3_lane" scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "deconv3_lane_relu" type: "ReLU" bottom: "deconv3_lane" top: "deconv3_lane" relu_param { negative_slope: 0 } } layer { name: "reorg2" type: "Convolution" bottom: "conv2" top: "reorg2" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } layer { name: "reorg2_relu" type: "ReLU" bottom: "reorg2" top: "reorg2" relu_param { negative_slope: 0 } } layer { name: "concat2" type: "Concat" bottom: "reorg2" bottom: "deconv3_lane" top: "concat2" concat_param { axis: 1 } } layer { name: "reduce4_lane" type: "Convolution" bottom: "concat2" top: "reduce4_lane" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } layer { name: "reduce4_lane_bn" type: "BatchNorm" bottom: "reduce4_lane" top: "reduce4_lane" batch_norm_param { eps: 1e-06 } } layer { name: "reduce4_lane_scale" type: "Scale" bottom: "reduce4_lane" top: "reduce4_lane" scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "reduce4_lane_relu" type: "ReLU" bottom: "reduce4_lane" top: "reduce4_lane" relu_param { negative_slope: 0 } } layer { name: "deconv4_lane" type: "Deconvolution" bottom: "reduce4_lane" top: "deconv4_lane" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 8 pad: 0 kernel_size: 2 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "deconv4_lane_bn" type: "BatchNorm" bottom: "deconv4_lane" top: "deconv4_lane" batch_norm_param { eps: 1e-06 } } layer { name: "deconv4_lane_scale" type: "Scale" bottom: "deconv4_lane" top: "deconv4_lane" scale_param { filler { type: "constant" value: 1 } bias_term: true } } layer { name: "deconv4_lane_relu" type: "ReLU" bottom: "deconv4_lane" top: "deconv4_lane" relu_param { negative_slope: 0 } } layer { name: "reorg1" type: "Convolution" bottom: "conv1" top: "reorg1" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 8 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } layer { name: "reorg1_relu" type: "ReLU" bottom: "reorg1" top: "reorg1" relu_param { negative_slope: 0 } } layer { name: "concat1" type: "Concat" bottom: "reorg1" bottom: "deconv4_lane" top: "concat1" concat_param { axis: 1 } } layer { name: "conv_out" type: "Convolution" bottom: "concat1" top: "conv_out" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 2 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } layer { name: "softmax" type: "Softmax" bottom: "conv_out" top: "softmax" } I1101 10:54:04.947386 23007 net.cpp:94] Creating Layer input I1101 10:54:04.947398 23007 net.cpp:402] input -> data I1101 10:54:04.947448 23007 net.cpp:144] Setting up input I1101 10:54:04.947463 23007 net.cpp:151] Top shape: 1 480 640 3 (921600) I1101 10:54:04.947468 23007 net.cpp:159] Memory required for data: 3686400 I1101 10:54:04.947482 23007 net.cpp:94] Creating Layer data_perm I1101 10:54:04.947489 23007 net.cpp:428] data_perm <- data I1101 10:54:04.947499 23007 net.cpp:402] data_perm -> data_perm I1101 10:54:04.947644 23007 net.cpp:144] Setting up data_perm I1101 10:54:04.947656 23007 net.cpp:151] Top shape: 1 3 480 640 (921600) I1101 10:54:04.947661 23007 net.cpp:159] Memory required for data: 7372800 I1101 10:54:04.947685 23007 net.cpp:94] Creating Layer scale_data_lane I1101 10:54:04.947690 23007 net.cpp:428] scale_data_lane <- data_perm I1101 10:54:04.947713 23007 net.cpp:402] scale_data_lane -> scale_data_lane I1101 10:54:04.947741 23007 net.cpp:144] Setting up scale_data_lane I1101 10:54:04.947765 23007 net.cpp:151] Top shape: 1 3 480 640 (921600) I1101 10:54:04.947783 23007 net.cpp:159] Memory required for data: 11059200 I1101 10:54:04.947798 23007 net.cpp:94] Creating Layer conv1 I1101 10:54:04.947803 23007 net.cpp:428] conv1 <- scale_data_lane I1101 10:54:04.947814 23007 net.cpp:402] conv1 -> conv1 Segmentation fault (core dumped)