Open franck-nkolongo opened 2 months ago
same here .. ` File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/topicgpt/TopicRepresentation.py:310, in extract_topics_no_new_vocab_computation(corpus, vocab, document_embeddings, clusterer, vocab_embeddings, n_topwords, topword_extraction_methods, consider_outliers) 306 dim_red_centroids = umap_mapper.transform(np.array(list(centroid_dict.values()))) # map the centroids to low dimensional space 308 dim_red_centroid_dict = {label: centroid for label, centroid in zip(centroid_dict.keys(), dim_red_centroids)} --> 310 word_topic_mat = extractor.compute_word_topic_mat(corpus, vocab, labels, consider_outliers = consider_outliers) # compute the word-topic matrix of the corpus 311 if "tfidf" in topword_extraction_methods: 312 tfidf_topwords, tfidf_dict = extractor.extract_topwords_tfidf(word_topic_mat = word_topic_mat, vocab = vocab, labels = labels, top_n_words = n_topwords) # extract the top-words according to tfidf
File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/topicgpt/ExtractTopWords.py:308, in ExtractTopWords.compute_word_topic_mat(self, corpus, vocab, labels, consider_outliers) 305 word_topic_mat = np.zeros((len(vocab), len((np.unique(labels))))) 307 for i, label in tqdm(enumerate(np.unique(labels)), desc="Computing word-topic matrix", total=len(np.unique(labels))): --> 308 topic_docs = corpus_arr[labels == label] 309 topic_doc_string = " ".join(topic_docs) 310 topic_doc_words = word_tokenize(topic_doc_string)
IndexError: boolean index did not match indexed array along dimension 0; dimension is 6969 but corresponding boolean dimension is 4999 `
4999
I've found the solution, first you need to delete the directory (SaveEmeddings which includes the embeddings.pkl file). This file was initially made with 1000 data (in my case), in your case, you must have initially tried with a 4999 data set.
hello, I have a problem: reviews = list(review_data[2]) reviews = reviews[:5000] # only consider the first 5k reviews
IndexError: boolean index did not match indexed array along dimension 0; dimension is 5000 but corresponding boolean dimension is 1000.
this works with reviews = reviews[:1000]