here have a problem
when I run python make_features.py data/vars --add_days=63
it's show error:
Traceback (most recent call last):
File "D:\Miniconda3\lib\site-packages\pandas\core\indexes\base.py", line 757, in astype
dtype=dtype)
File "D:\Miniconda3\lib\site-packages\pandas\core\indexes\base.py", line 308, in __new__
dtype=dtype, **kwargs)
File "D:\Miniconda3\lib\site-packages\pandas\core\indexes\datetimes.py", line 303, in __new__
int_as_wall_time=True)
File "D:\Miniconda3\lib\site-packages\pandas\core\arrays\datetimes.py", line 376, in _from_sequence
ambiguous=ambiguous, int_as_wall_time=int_as_wall_time)
File "D:\Miniconda3\lib\site-packages\pandas\core\arrays\datetimes.py", line 1720, in sequence_to_dt64ns
dtype = _validate_dt64_dtype(dtype)
File "D:\Miniconda3\lib\site-packages\pandas\core\arrays\datetimes.py", line 2016, in _validate_dt64_dtype
.format(dtype=dtype))
ValueError: Unexpected value for 'dtype': 'datetime64[D]'. Must be 'datetime64[ns]' or DatetimeTZDtype'.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "make_features.py", line 349, in <module>
run()
File "make_features.py", line 273, in run
df, nans, starts, ends = prepare_data(args.start, args.end, args.valid_threshold)
File "make_features.py", line 176, in prepare_data
df = read_x(start, end)
File "make_features.py", line 75, in read_x
df = read_all()
File "make_features.py", line 46, in read_all
df = read_file('train_2')
File "make_features.py", line 37, in read_file
df.columns = df.columns.astype('M8[D]')
File "D:\Miniconda3\lib\site-packages\pandas\core\indexes\base.py", line 760, in astype
raise TypeError(msg.format(name=type(self).__name__, dtype=dtype))
TypeError: Cannot cast Index to dtype M8[D]
how can I to solve?
OS : win 10
Python Version : 3.6.8
numba : 0.42.0
numpy : 1.16.2
pandas : 0.24.1
Hi thank for your code to let us learn
here have a problem when I run
python make_features.py data/vars --add_days=63
it's show error:how can I to solve?
OS : win 10 Python Version : 3.6.8 numba : 0.42.0 numpy : 1.16.2 pandas : 0.24.1