Asphelzhn / Asphelzhn.github.io

Harling's blog
0 stars 0 forks source link

Kaggle #2

Open Asphelzhn opened 5 years ago

Asphelzhn commented 5 years ago

LR+GDBT+FM+NN上去一搞,再ensemble一下,总能得到一个不错的结果。

Asphelzhn commented 5 years ago

如果能在比赛过程中体现出分析问题解决问题的能力,特别是能针对性的提出结果方案,才能体现真实水平。举一个例子,上海交大APEX实验室的团队参加KDD Cup 11之后开发了SVD Feature

Asphelzhn commented 5 years ago

现在招人的时候几乎是这个标准:

写上参加过Kaggle比赛,我会看简历。

得过一次10%,我会给电话面试。

得过2次或者以上10%,我会给on site面试。

得过一次前10,我们会谈笑风生。

Asphelzhn commented 5 years ago

如果要在Kaggle比赛里面获得一个好的成绩,免不了要做大量的实验:关于参数选择,模型选择,以及特征工程等等。

有一些数据比较麻烦,处理数据就费时间,feature engineering的余地也比较丰富,有时候要自己写一些规则或者写loss function,这些比赛可以学到不少。

获奖不容易。简单的比赛由于参加人数太多,方法又太同质化,时间都花在tuning parameter和ensemble上,获奖需要很好的运气。复杂的比赛,方法千差万别,还搞tuning parameter那套就不灵了,top队伍时间都花在抓问题关键上,谁抓到的关键更多,谁分数就更高,这个要花很多时间和思考,比较刺激。