AsuharietYgvar / AppleNeuralHash2ONNX

Convert Apple NeuralHash model for CSAM Detection to ONNX.
Apache License 2.0
1.54k stars 132 forks source link

Newer NeuralHash models use Float16 #11

Open AngeloD2022 opened 1 year ago

AngeloD2022 commented 1 year ago

I have managed to get a model converted using the conversion script that I modified:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import argparse
import sys
import time

import struct
import json

import onnx
from onnx import helper, shape_inference
from onnx import AttributeProto, TensorProto, GraphProto
from onnx import numpy_helper

import numpy as np

def to_float16(bin: bytes):
    return np.frombuffer(bin, dtype=np.float16)

def to_float(bin: bytes):
    return np.frombuffer(bin, dtype=np.float32)

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('coreml_folder', help='Input coreml model folder')
    args = parser.parse_args()
    coreml_folder = args.coreml_folder

    layer_bytes = []
    net_layer_data = {}
    coreml_net = coreml_folder + '/model.espresso.net'
    coreml_shape = coreml_folder + '/model.espresso.shape'
    coreml_weights = coreml_folder + '/model.espresso.weights'

    with open(coreml_net, encoding='utf-8') as f:
        net_dict = json.load(f)
        net_layers = net_dict['layers']

    # print(net_layers[1])

    with open(coreml_shape, encoding='utf-8') as f:
        net_dict = json.load(f)
        net_layer_shapes = net_dict['layer_shapes']

    # print(net_layer_shapes[net_layers[1]['bottom']])

    # coreml_weights
    with open(coreml_weights, 'rb') as f:
        # First byte of the file is an integer with how many
        # sections there are.  This lets us iterate through each section
        # and get the map for how to read the rest of the file.
        num_layers = struct.unpack('<i', f.read(4))[0]
        # print("num_layers: " + str(num_layers))

        f.read(4)  # padding bytes

        # The next section defines the number of bytes each layer contains.
        # It has a format of
        # | Layer Number | <padding> | Bytes in layer | <padding> |
        while len(layer_bytes) < num_layers:
            layer_num, _, num_bytes, _ = struct.unpack('<iiii', f.read(16))
            layer_bytes.append((layer_num, num_bytes))

        # print("layer_num: " + str(layer_num))
        # print("num_bytes: " + str(num_bytes))
        # print("each layer:\n")

        # Read actual layer weights.  Weights are floats as far as I can tell.
        for layer_num, num_bytes in layer_bytes:
            # print("layer_num: " + str(layer_num))
            # print("count: " + str(num_bytes / 4))
            # data = struct.unpack("f" * int((num_bytes / 4)), f.read(num_bytes))

            # more recent versions of neuralhash switched to float16...
            raw_data = f.read(num_bytes)
            net_layer_data[layer_num] = raw_data

    # print(net_layer_data[1])
    # tensor_shape = [16]
    # tensor = helper.make_tensor('1', TensorProto.FLOAT, tensor_shape, net_layer_data[1])
    # print(tensor)

    # 构建onnx
    # 创建输入 (ValueInfoProto)
    net_inputes = []
    net_input_names = net_layers[0]['bottom'].split(',')
    for net_input_name in net_input_names:
        net_input_shape_dict = net_layer_shapes[net_input_name]
        net_input = helper.make_tensor_value_info(net_input_name, TensorProto.FLOAT,
                                                  [net_input_shape_dict['n'], net_input_shape_dict['k'],
                                                   net_input_shape_dict['h'], net_input_shape_dict['w']])
        net_inputes.append(net_input)

    # 创建输出 (ValueInfoProto)
    net_output_shape_dict = net_layer_shapes[net_layers[-1]['top']]
    net_output = helper.make_tensor_value_info(net_layers[-1]['top'], TensorProto.FLOAT,
                                               [net_output_shape_dict['n'], net_output_shape_dict['k'],
                                                net_output_shape_dict['h'], net_output_shape_dict['w']])
    net_outputes = [net_output]

    # check the model.espresso.net file to adjust the index #
    print('check the model.espresso.net file to adjust the index')
    # net_output_name = net_layers[-2]['top']
    net_output_name = net_layers[-1]['top']
    if net_output_name.isdigit() != True:
        net_output2_shape_dict = net_layer_shapes[net_output_name]
        net_output2 = helper.make_tensor_value_info(net_output_name, TensorProto.FLOAT,
                                                    [net_output2_shape_dict['n'], net_output2_shape_dict['k'],
                                                     net_output2_shape_dict['h'], net_output2_shape_dict['w']])
        net_outputes.append(net_output2)

    onnx_blob_shapes = []
    for blob_name, blob_shape_dict in net_layer_shapes.items():
        onnx_blob_shapes.append(helper.make_tensor_value_info(blob_name, TensorProto.FLOAT,
                                                              [blob_shape_dict['n'],
                                                               blob_shape_dict['k'],
                                                               blob_shape_dict['h'],
                                                               blob_shape_dict['w']]))

    # 创建nodes NodeProto
    onnx_net_nodes = []
    onnx_net_weights = []

    # check the model.espresso.net file to adjust the index #
    print('check the model.espresso.net file to adjust the index')
    # layer_info = net_layers[1]
    layer_info = net_layers[0]

    for layer_info in net_layers:
        print(layer_info['type'])
        if layer_info['type'] == 'convolution':
            stride_x = 1
            if ('stride_x' in layer_info):
                stride_x = layer_info['stride_x']

            stride_y = 1
            if ('stride_y' in layer_info):
                stride_y = layer_info['stride_y']

            auto_pad = None
            if layer_info['pad_mode'] == 1:
                auto_pad = 'SAME_UPPER'

            node_inputs = layer_info['bottom'].split(',')
            if ('blob_weights' in layer_info):
                node_inputs.append(str(layer_info['blob_weights']))
            elif ('blob_weights_f16' in layer_info):
                node_inputs.append(str(layer_info['blob_weights_f16']))

            if ('blob_biases' in layer_info):
                node_inputs.append(str(layer_info['blob_biases']))

            node_conv_outputs = layer_info['top'].split(',')
            node_relu_outputs = []
            if layer_info['fused_relu'] == 1:
                node_relu_outputs = node_conv_outputs
                node_conv_outputs = []
                for temp_output in node_relu_outputs:
                    conv_output_blob_name = 'conv_' + temp_output
                    node_conv_outputs.append(conv_output_blob_name)
                    blob_shape_dict = net_layer_shapes[temp_output]
                    onnx_blob_shapes.append(helper.make_tensor_value_info(conv_output_blob_name, TensorProto.FLOAT,
                                                                          [blob_shape_dict['n'],
                                                                           blob_shape_dict['k'],
                                                                           blob_shape_dict['h'],
                                                                           blob_shape_dict['w']]))

            conv_group_num = layer_info['n_groups']
            if auto_pad:
                layer_node = helper.make_node('Conv',  # node type
                                              node_inputs,  # inputs
                                              node_conv_outputs,  # outputs
                                              kernel_shape=[layer_info['Nx'], layer_info['Ny']],
                                              strides=[stride_x, stride_y],
                                              auto_pad=auto_pad,
                                              group=conv_group_num,
                                              dilations=[1, 1])
            else:
                layer_node = helper.make_node('Conv',  # node type
                                              node_inputs,  # inputs
                                              node_conv_outputs,  # outputs
                                              kernel_shape=[layer_info['Nx'], layer_info['Ny']],
                                              strides=[stride_x, stride_y],
                                              pads=[layer_info['pad_l'], layer_info['pad_t'], layer_info['pad_r'],
                                                    layer_info['pad_b']],
                                              group=conv_group_num,
                                              dilations=[1, 1])
            onnx_net_nodes.append(layer_node)

            # weights
            weights_shape = [layer_info['C'], int(layer_info['K'] / conv_group_num), layer_info['Nx'], layer_info['Ny']]
            onnx_weights_tensor = helper.make_tensor(str(layer_info['blob_weights_f16']), TensorProto.FLOAT, weights_shape,
                                                     tuple(to_float16(net_layer_data[layer_info['blob_weights_f16']]).astype(np.float32)))
            onnx_net_weights.append(onnx_weights_tensor)

            # bias
            if ('blob_biases' in layer_info):
                bias_shape = [layer_info['C']]
                onnx_bias_tensor = helper.make_tensor(str(layer_info['blob_biases']), TensorProto.FLOAT, bias_shape,
                                                      tuple(to_float(net_layer_data[layer_info['blob_biases']])))
                onnx_net_weights.append(onnx_bias_tensor)

            if layer_info['fused_relu'] == 1:
                layer_node = helper.make_node('Relu',  # node type
                                              node_conv_outputs,  # inputs
                                              node_relu_outputs,  # outputs
                                              )
                onnx_net_nodes.append(layer_node)
        elif layer_info['type'] == 'pool':
            stride_x = 1
            if ('stride_x' in layer_info):
                stride_x = layer_info['stride_x']

            stride_y = 1
            if ('stride_y' in layer_info):
                stride_y = layer_info['stride_y']

            node_type = 'MaxPool'
            if layer_info['avg_or_max'] == 0:
                node_type = 'AveragePool'

            node_inputs = layer_info['bottom'].split(',')
            node_outputs = layer_info['top'].split(',')
            layer_node = helper.make_node(node_type,  # node type
                                          node_inputs,  # inputs
                                          node_outputs,  # outputs
                                          kernel_shape=[layer_info['size_x'], layer_info['size_y']],
                                          strides=[stride_x, stride_y],
                                          pads=[layer_info['pad_l'], layer_info['pad_t'], layer_info['pad_r'],
                                                layer_info['pad_b']])
            onnx_net_nodes.append(layer_node)
        elif layer_info['type'] == 'elementwise':
            node_inputs = layer_info['bottom'].split(',')
            node_type = ''
            node_inputs_extra = []
            if layer_info['operation'] == 2 or layer_info['operation'] == 0:
                # check
                node_type = 'Add'
                if len(node_inputs) == 1:
                    # scales
                    scales_tensor_name = 'elementwise_' + layer_info['top']
                    node_inputs_extra.append(scales_tensor_name)
                    scales = [layer_info['alpha']]
                    onnx_scales_tensor = helper.make_tensor(scales_tensor_name, TensorProto.FLOAT, [1], scales)
                    onnx_net_weights.append(onnx_scales_tensor)
            elif layer_info['operation'] == 1:
                # check 注意如果输如只有1个,需要像取[layer_info['alpha']]值
                node_type = 'Mul'
                if len(node_inputs) == 1:
                    # scales
                    scales_tensor_name = 'elementwise_' + layer_info['top']
                    node_inputs_extra.append(scales_tensor_name)
                    scales = [layer_info['alpha']]
                    onnx_scales_tensor = helper.make_tensor(scales_tensor_name, TensorProto.FLOAT, [1], scales)
                    onnx_net_weights.append(onnx_scales_tensor)
            elif layer_info['operation'] == -999:
                node_type = 'Sub'
                if len(node_inputs) == 1:
                    # scales
                    scales_tensor_name = 'elementwise_' + layer_info['top']
                    node_inputs_extra.append(scales_tensor_name)
                    scales = [layer_info['alpha']]
                    onnx_scales_tensor = helper.make_tensor(scales_tensor_name, TensorProto.FLOAT, [1], scales)
                    onnx_net_weights.append(onnx_scales_tensor)
            elif layer_info['operation'] == 3:
                # check
                node_type = 'Mul'
                if len(node_inputs) == 1:
                    # scales
                    scales_tensor_name = 'elementwise_' + layer_info['top']
                    node_inputs_extra.append(scales_tensor_name)
                    scales = [layer_info['alpha']]
                    onnx_scales_tensor = helper.make_tensor(scales_tensor_name, TensorProto.FLOAT, [1], scales)
                    onnx_net_weights.append(onnx_scales_tensor)
            elif layer_info['operation'] == 10:
                # check,求倒数,y=1/x
                node_type = 'Div'
                # scales
                scales_tensor_name = 'elementwise_' + layer_info['top']
                node_inputs_extra.append(scales_tensor_name)
                scales = [layer_info['alpha']]
                onnx_scales_tensor = helper.make_tensor(scales_tensor_name, TensorProto.FLOAT, [1], scales)
                onnx_net_weights.append(onnx_scales_tensor)
            elif layer_info['operation'] == 24:
                # check
                node_type = 'Abs'
            elif layer_info['operation'] == 119:
                node_type = 'Clip'
                # check
                alpha_tensor_name = 'elementwise_' + layer_info['top'] + 'alpha'
                beta_tensor_name = 'elementwise_' + layer_info['top'] + 'beta'
                node_inputs_extra.append(alpha_tensor_name)
                node_inputs_extra.append(beta_tensor_name)
                alpha = 0.0
                if 'alpha' in layer_info:
                    alpha = [layer_info['alpha']]
                beta = 1.0
                if 'beta' in layer_info:
                    beta = [layer_info['beta']]
                onnx_alpha_tensor = helper.make_tensor(alpha_tensor_name, TensorProto.FLOAT, [1], alpha)
                onnx_beta_tensor = helper.make_tensor(beta_tensor_name, TensorProto.FLOAT, [1], beta)
                onnx_net_weights.append(onnx_alpha_tensor)
                onnx_net_weights.append(onnx_beta_tensor)
            else:
                print('Error: unsupported elementwise operation: ' + str(layer_info['operation']))
                assert (0)

            node_inputs = layer_info['bottom'].split(',')
            node_inputs.extend(node_inputs_extra)
            node_outputs = layer_info['top'].split(',')
            layer_node = helper.make_node(node_type,  # node type
                                          node_inputs,  # inputs
                                          node_outputs,  # outputs
                                          )
            onnx_net_nodes.append(layer_node)
        elif layer_info['type'] == 'upsample':
            node_type = 'Upsample'
            mode = 0
            if layer_info['mode'] != 0:
                print('Error: unsupported upsample mode: ' + str(layer_info['mode']))
                assert (0)

            scales_tensor_name = 'upsample_' + layer_info['top']

            node_inputs = layer_info['bottom'].split(',')

            if node_inputs[0].isdigit() != True:
                node_input_shape_dict = net_layer_shapes[node_inputs[0]]
                node_input_tensor = helper.make_tensor_value_info(node_inputs[0], TensorProto.FLOAT,
                                                                  [node_input_shape_dict['n'],
                                                                   node_input_shape_dict['k'],
                                                                   node_input_shape_dict['h'],
                                                                   node_input_shape_dict['w']])
                net_inputes.append(node_input_tensor)

            node_inputs.append(scales_tensor_name)
            node_outputs = layer_info['top'].split(',')
            layer_node = helper.make_node(node_type,  # node type
                                          node_inputs,  # inputs
                                          node_outputs,  # outputs
                                          mode='nearest',
                                          )
            onnx_net_nodes.append(layer_node)

            # scales
            scales = [1.0, 1.0, layer_info['scaling_factor_x'], layer_info['scaling_factor_y']]
            onnx_scales_tensor = helper.make_tensor(scales_tensor_name, TensorProto.FLOAT, [4], scales)
            onnx_net_weights.append(onnx_scales_tensor)
        elif layer_info['type'] == 'concat':
            node_type = 'Concat'

            node_inputs = layer_info['bottom'].split(',')
            node_outputs = layer_info['top'].split(',')
            layer_node = helper.make_node(node_type,  # node type
                                          node_inputs,  # inputs
                                          node_outputs,  # outputs
                                          axis=1,
                                          )
            onnx_net_nodes.append(layer_node)
        elif layer_info['type'] == 'activation':
            node_inputs = layer_info['bottom'].split(',')
            node_outputs = layer_info['top'].split(',')

            activation_mode = layer_info['mode']
            if activation_mode == 0:
                layer_node = helper.make_node('Relu',  # node type
                                              node_inputs,  # inputs
                                              node_outputs,  # outputs
                                              )
            elif activation_mode == 1:
                layer_node = helper.make_node('Tanh',  # node type
                                              node_inputs,  # inputs
                                              node_outputs,  # outputs
                                              )
            elif activation_mode == 2:
                layer_node = helper.make_node('LeakyRelu',  # node type
                                              node_inputs,  # inputs
                                              node_outputs,  # outputs
                                              )
            elif activation_mode == 3:
                layer_node = helper.make_node('Sigmoid',  # node type
                                              node_inputs,  # inputs
                                              node_outputs,  # outputs
                                              )
            elif activation_mode == 4:
                layer_node = helper.make_node('PRelu',  # node type
                                              node_inputs,  # inputs
                                              node_outputs,  # outputs
                                              )
            elif activation_mode == 8:
                layer_node = helper.make_node('Elu',  # node type
                                              node_inputs,  # inputs
                                              node_outputs,  # outputs
                                              )
            elif activation_mode == 9:
                layer_node = helper.make_node('ThresholdedRelu',  # node type
                                              node_inputs,  # inputs
                                              node_outputs,  # outputs
                                              alpha=layer_info['alpha']
                                              )
            elif activation_mode == 10:
                layer_node = helper.make_node('Softplus',  # node type
                                              node_inputs,  # inputs
                                              node_outputs,  # outputs
                                              )
            elif activation_mode == 12:
                layer_node = helper.make_node('Softsign',  # node type
                                              node_inputs,  # inputs
                                              node_outputs,  # outputs
                                              )
            else:
                print('Error: unsupported activation mode: ' + str(activation_mode))
                assert (0)

            onnx_net_nodes.append(layer_node)
        elif layer_info['type'] == 'load_constant':
            # constant_blob
            print('constant_blob: ' + str(layer_info['constant_blob']))
        elif layer_info['type'] == 'batchnorm':
            node_inputs = layer_info['bottom'].split(',')
            weights_prefix = str(layer_info['blob_batchnorm_params'])
            if ('blob_batchnorm_params' in layer_info):
                node_inputs.append(weights_prefix + 's')
                node_inputs.append(weights_prefix + 'bias')
                # node_inputs.append(weights_prefix+'mean')
                # node_inputs.append(weights_prefix+'var')

            channels = layer_info['C']

            node_bn_outputs = layer_info['top'].split(',')
            data = to_float(net_layer_data[layer_info['blob_batchnorm_params']])
            data = data.reshape([channels, 4])
            s = data[:, 0]
            bias = data[:, 1]
            # mean = data[:,1]
            # var = data[:,0]

            training_mode = 0
            if layer_info['training'] == 1:
                # node_bn_outputs.append(layer_info['name']+'mean')
                # node_bn_outputs.append(layer_info['name']+'var')
                training_mode = 1

            layer_node = helper.make_node('InstanceNormalization',  # node type
                                          node_inputs,  # inputs
                                          node_bn_outputs,  # outputs
                                          epsilon=layer_info['training_eps'])
            #   momentum=layer_info['training_momentum'],
            # training_mode=training_mode)
            onnx_net_nodes.append(layer_node)

            # weights
            weights_shape = [layer_info['C']]
            onnx_s_tensor = helper.make_tensor(weights_prefix + 's', TensorProto.FLOAT, weights_shape, s)
            onnx_net_weights.append(onnx_s_tensor)
            onnx_bias_tensor = helper.make_tensor(weights_prefix + 'bias', TensorProto.FLOAT, weights_shape, bias)
            onnx_net_weights.append(onnx_bias_tensor)
            # onnx_mean_tensor = helper.make_tensor(weights_prefix+'mean', TensorProto.FLOAT, weights_shape, mean)
            # onnx_net_weights.append(onnx_mean_tensor)
            # onnx_var_tensor = helper.make_tensor(weights_prefix+'var', TensorProto.FLOAT, weights_shape, var)
            # onnx_net_weights.append(onnx_var_tensor)
        elif layer_info['type'] == 'inner_product':
            stride_x = 1
            if ('stride_x' in layer_info):
                stride_x = layer_info['stride_x']

            stride_y = 1
            if ('stride_y' in layer_info):
                stride_y = layer_info['stride_y']

            node_inputs = layer_info['bottom'].split(',')
            if ('blob_weights' in layer_info):
                node_inputs.append(str(layer_info['blob_weights']))
            if ('blob_biases' in layer_info):
                node_inputs.append(str(layer_info['blob_biases']))

            layer_info['Nx'] = 1
            layer_info['Ny'] = 1

            node_conv_outputs = layer_info['top'].split(',')
            node_relu_outputs = []
            if layer_info['has_relu'] == 1:
                node_relu_outputs = node_conv_outputs
                node_conv_outputs = []
                for temp_output in node_relu_outputs:
                    conv_output_blob_name = 'conv_' + temp_output
                    node_conv_outputs.append(conv_output_blob_name)
                    blob_shape_dict = net_layer_shapes[temp_output]
                    onnx_blob_shapes.append(helper.make_tensor_value_info(conv_output_blob_name, TensorProto.FLOAT,
                                                                          [blob_shape_dict['n'],
                                                                           blob_shape_dict['k'],
                                                                           blob_shape_dict['h'],
                                                                           blob_shape_dict['w']]))

            layer_node = helper.make_node('Conv',  # node type
                                          node_inputs,  # inputs
                                          node_conv_outputs,  # outputs
                                          kernel_shape=[layer_info['Nx'], layer_info['Ny']],
                                          strides=[stride_x, stride_y],
                                          pads=[0, 0, 0, 0],
                                          group=1,
                                          dilations=[1, 1])
            onnx_net_nodes.append(layer_node)

            # weights
            weights_shape = [layer_info['nC'], int(layer_info['nB']), layer_info['Nx'], layer_info['Ny']]
            onnx_weights_tensor = helper.make_tensor(str(layer_info['blob_weights_f16']), TensorProto.FLOAT, weights_shape,
                                                     tuple(to_float16(net_layer_data[layer_info['blob_weights_f16']]).astype(np.float32)))
            onnx_net_weights.append(onnx_weights_tensor)

            # bias
            if ('blob_biases' in layer_info):
                bias_shape = [layer_info['nC']]
                onnx_bias_tensor = helper.make_tensor(str(layer_info['blob_biases']), TensorProto.FLOAT, bias_shape,
                                                      tuple(to_float(net_layer_data[layer_info['blob_biases']])))
                onnx_net_weights.append(onnx_bias_tensor)

            if layer_info['has_relu'] == 1:
                layer_node = helper.make_node('Relu',  # node type
                                              node_conv_outputs,  # inputs
                                              node_relu_outputs,  # outputs
                                              )
                onnx_net_nodes.append(layer_node)
        else:
            print('Error: unsupported layer type: ' + layer_info['type'])
            assert (0)

    # 创建graph GraphProto
    graph_def = helper.make_graph(
        onnx_net_nodes,
        'onnx-model',
        net_inputes,
        net_outputes,
        initializer=onnx_net_weights,
        value_info=onnx_blob_shapes,
    )

    # 创建model (ModelProto)
    # onnx_model = helper.make_model(graph_def, producer_name='YouTu Tencent')
    onnx_model = helper.make_model(graph_def, producer_name='YouTu Tencent',
                                   opset_imports=[helper.make_operatorsetid("", 12)])

    # Change model version to support onnxruntime
    onnx_model.ir_version = 7

    # print('The model is:\n{}'.format(onnx_model))
    onnx.checker.check_model(onnx_model)
    print('Before shape inference, the shape info of Y is:\n{}'.format(onnx_model.graph.value_info))

    # Apply shape inference on the model
    inferred_model = shape_inference.infer_shapes(onnx_model)
    onnx.checker.check_model(inferred_model)
    print('After shape inference, the shape info of Y is:\n{}'.format(inferred_model.graph.value_info))
    onnx.save(inferred_model, coreml_folder + '/model.onnx')

if __name__ == '__main__':
    main()
AngeloD2022 commented 1 year ago

This unfortunately yields the following error when using nnhash.py

2023-03-12 17:41:18.591325 [W:onnxruntime:, graph.cc:3490 CleanUnusedInitializersAndNodeArgs] Removing initializer '219'. It is not used by any node and should be removed from the model.
2023-03-12 17:41:18.591347 [W:onnxruntime:, graph.cc:3490 CleanUnusedInitializersAndNodeArgs] Removing initializer '223'. It is not used by any node and should be removed from the model.
2023-03-12 17:41:22.612642 [E:onnxruntime:, sequential_executor.cc:494 ExecuteKernel] Non-zero status code returned while running FusedConv node. Name:'' Status Message: X num_dims does not match W num_dims. X: {1,1280,1,1} W: {500}
Traceback (most recent call last):
  File "/Users/angelodeluca/miniforge3/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 200, in run
    return self._sess.run(output_names, input_feed, run_options)
onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Non-zero status code returned while running FusedConv node. Name:'' Status Message: X num_dims does not match W num_dims. X: {1,1280,1,1} W: {500}
AngeloD2022 commented 1 year ago

neuralhash.zip Here is a copy of the latest model.

AsuharietYgvar commented 1 year ago

Looks like the conversion of inner_product layers is not correct. You can fix it by implementing similar _fp16 weights handling logic to convolution layers.

aksiere commented 2 months ago

neuralhash.zip Here is a copy of the latest model.

Hi! Have you made any progress on this?

AngeloD2022 commented 2 months ago

Haven't looked into it since.