Open vpuri3 opened 6 months ago
It is a great idea indeed. I was thinking about it 2 days ago but I wanted to combine it with making the grid and the inverse denominator trainable parameters. This is my first time trying to write a custom backward and forward so any comment would be appreciated a lot.
My first experiment so far:
class RSWAFFunction(Function):
@staticmethod
def forward(ctx, input, grid, inv_denominator, train_grid, train_inv_denominator):
# Compute the forward pass
#print('\n')
#print(f"Forward pass - grid: {(grid[0].item(),grid[-1].item())}, inv_denominator: {inv_denominator.item()}")
#print(f"grid.shape: {grid.shape }")
#print(f"grid: {(grid[0],grid[-1]) }")
#print(f"inv_denominator.shape: {inv_denominator.shape }")
#print(f"inv_denominator: {inv_denominator }")
diff = (input[..., None] - grid)
diff_mul = diff.mul(inv_denominator)
tanh_diff = torch.tanh(diff)
tanh_diff_deriviative = -tanh_diff.mul(tanh_diff) + 1 # sech^2(x) = 1 - tanh^2(x)
# Save tensors for backward pass
ctx.save_for_backward(input, tanh_diff, tanh_diff_deriviative, diff, inv_denominator)
ctx.train_grid = train_grid
ctx.train_inv_denominator = train_inv_denominator
return tanh_diff_deriviative
##### SOS NOT SURE HOW grad_inv_denominator, grad_grid ARE CALCULATED CORRECTLY YET
##### MUST CHECK https://github.com/pytorch/pytorch/issues/74802
##### MUST CHECK https://www.changjiangcai.com/studynotes/2020-10-18-Custom-Function-Extending-PyTorch/
##### MUST CHECK https://pytorch.org/tutorials/intermediate/custom_function_double_backward_tutorial.html
##### MUST CHECK https://pytorch.org/tutorials/beginner/examples_autograd/two_layer_net_custom_function.html
##### MUST CHECK https://gist.github.com/Hanrui-Wang/bf225dc0ccb91cdce160539c0acc853a
@staticmethod
def backward(ctx, grad_output):
# Retrieve saved tensors
input, tanh_diff, tanh_diff_deriviative, diff, inv_denominator = ctx.saved_tensors
grad_grid = None
grad_inv_denominator = None
#print(f"tanh_diff_deriviative shape: {tanh_diff_deriviative.shape }")
#print(f"tanh_diff shape: {tanh_diff.shape }")
#print(f"grad_output shape: {grad_output.shape }")
# Compute the backward pass for the input
grad_input = -2 * tanh_diff * tanh_diff_deriviative * grad_output
#print(f"Backward pass 1 - grad_input: {(grad_input.min().item(), grad_input.max().item())}")
#print(f"grad_input shape: {grad_input.shape }")
#print(f"grad_input.sum(dim=-1): {grad_input.sum(dim=-1).shape}")
grad_input = grad_input.sum(dim=-1).mul(inv_denominator)
#print(f"Backward pass 2 - grad_input: {(grad_input.min().item(), grad_input.max().item())}")
#print(f"grad_input: {grad_input}")
#print(f"grad_input shape: {grad_input.shape }")
# Compute the backward pass for grid
if ctx.train_grid:
#print('\n')
#print(f"grad_grid shape: {grad_grid.shape }")
grad_grid = -inv_denominator * grad_output.sum(dim=0).sum(dim=0)#-(inv_denominator * grad_output * tanh_diff_deriviative).sum(dim=0) #-inv_denominator * grad_output.sum(dim=0).sum(dim=0)
#print(f"Backward pass - grad_grid: {(grad_grid[0].item(),grad_grid[-1].item())}")
#print(f"grad_grid.shape: {grad_grid.shape }")
#print(f"grad_grid: {(grad_grid[0],grad_grid[-1]) }")
#print(f"inv_denominator shape: {inv_denominator.shape }")
#print(f"grad_grid shape: {grad_grid.shape }")
# Compute the backward pass for inv_denominator
if ctx.train_inv_denominator:
grad_inv_denominator = (grad_output* diff).sum() #(grad_output * diff * tanh_diff_deriviative).sum() #(grad_output* diff).sum()
#print(f"Backward pass - grad_inv_denominator: {grad_inv_denominator.item()}")
#print(f"diff shape: {diff.shape }")
#print(f"grad_inv_denominator shape: {grad_inv_denominator.shape }")
#print(f"grad_inv_denominator : {grad_inv_denominator }")
return grad_input, grad_grid, grad_inv_denominator, None, None # same number as tensors or parameters
class ReflectionalSwitchFunction(nn.Module):
def __init__(
self,
grid_min: float = -1.2,
grid_max: float = 0.2,
num_grids: int = 8,
exponent: int = 2,
inv_denominator: float = 0.5,
train_grid: bool = False,
train_inv_denominator: bool = False,
):
super().__init__()
grid = torch.linspace(grid_min, grid_max, num_grids)
self.train_grid = torch.tensor(train_grid, dtype=torch.bool)
self.train_inv_denominator = torch.tensor(train_inv_denominator, dtype=torch.bool)
self.grid = torch.nn.Parameter(grid, requires_grad=train_grid)
#print(f"grid initial shape: {self.grid.shape }")
self.inv_denominator = torch.nn.Parameter(torch.tensor(inv_denominator, dtype=torch.float32), requires_grad=train_inv_denominator) # Cache the inverse of the denominator
def forward(self, x):
return RSWAFFunction.apply(x, self.grid, self.inv_denominator, self.train_grid, self.train_inv_denominator)
I am not sure yet how to handle grad_inv_denominator and grad_grid with respect to grad_output. Any idea or explantion of what I'm missing would be invaluable. So propably I will not have a lot of time for the project in the next 10 days due to PhD obligation, but I will try to keep in touch with any updates in the KAN ecosystem.
How is your experience playing with KANs in julia @vpuri3 ?
Let torch handle gradients WRT grid and denominator. There's no speedup to be gained over there from what I understand. I would recommend only writing custom gradient for rswaf_core
from my earlier comment.
So I would break it down as follows:
class RSWAF(nn.Module): # let torch handle gradients WRT grid, denominator
def __init__(self, grid, denominator...): #
...
self.grid = grid # trainable
self.demoninator = denominator # trainable
def forward(x):
y = (x - self.grid) / self.denominator # dont pass grid, denominator to RSWAF_core
return RSWAF_core(y)
class RSWAF_core(autograd.Function): # write custom gradient for this guy
def forward(x, ...):
...
return 1 - tanh(x)**2
...
I hope this helps.
My experience with Julia has been pretty smooth. It took me ~1 hr to come up with my implementation and it is only 2x slower than MLP.
You can define a custom gradient rule for RSWAF basis by noting the derivative of the key operation
has a lot of computation in common with the forward pass. Specifically,
A custom gradient can share work between the forward and backward pass thus improving efficiency and memory utilization. You can check my Julia implementation for reference.