Implement the ability to generate plots like this below into the Python Toolkit, in a manner that can be inherited from and extended by other Python_TK-interiting toolkits.
Features to include:
Ability to pass lists of X, Y, Z values
Ability to enable contours and contour density
Colormap
Title
Axis labels
Enable or disable legend, and set title
Apply formats to contour and legend values
The code below was used to generate the plot above:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
import matplotlib.ticker as ticker
def myfmt(x, pos):
return '{0:.1f}'.format(x)
def pcfmt(x, pos):
return '{0:.0f}%'.format(x)
# Convert from pandas dataframes to numpy arrays
X0, Y0, Z0, = np.array([]), np.array([]), np.array([])
for i in range(len(X_dat)):
X0 = np.append(X0, X[i])
Y0 = np.append(Y0, Y[i])
Z0 = np.append(Z0, Z[i])
# create x-y points to be used in heatmap
xi = np.linspace(X0.min(), X0.max(), 1000)
yi = np.linspace(Y0.min(), Y0.max(), 1000)
# Interpolate for plotting
zi = griddata((X0, Y0), Z0, (xi[None,:], yi[:,None]), method='cubic')
# Create the contour plot
CS = plt.contourf(xi, yi, zi, 150, cmap="Oranges_r",
vmax=zi.max(), vmin=zi.min())
intervals = int(zi.max() - zi.min())
CS2 = plt.contour(xi, yi, zi, intervals, colors='k')
plt.clabel(CS2, inline=1, fontsize=10, colors='k', fmt=ticker.FuncFormatter(pcfmt))
plt.colorbar(CS, label="% hours comfortable", format=ticker.FuncFormatter(myfmt))
plt.xlabel("Evaporative cooling ratio")
plt.ylabel("Wind porosity ratio")
plt.title("% annual hours with UTCI between 9°C and 32°C")
plt.show()
Implement the ability to generate plots like this below into the Python Toolkit, in a manner that can be inherited from and extended by other Python_TK-interiting toolkits.
Features to include:
The code below was used to generate the plot above:
cc @tg359