Cross-platform, customizable multimedia/video processing framework. With strong GPU acceleration, heterogeneous design, multi-language support, easy to use, multi-framework compatible and high performance, the framework is ideal for transcoding, AI inference, algorithm integration, live video streaming, and more.
when i want to run the enhance_demo, i meet the bug, i know it's from ffmpeg, but my computer is in CUDA environment, and the gpu was using by python when i run the demo, i test two computer, still same thing.
i use the docker you provided docker pull babitmf/bmf_runtime:latest
1080Ti CUDA 12.2
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.161.08 Driver Version: 535.161.08 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce GTX 1080 Ti Off | 00000000:03:00.0 Off | N/A |
| 31% 53C P2 221W / 250W | 496MiB / 11264MiB | 26% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 1872 G /usr/libexec/Xorg 56MiB |
| 0 N/A N/A 2189 G /usr/bin/gnome-shell 7MiB |
| 0 N/A N/A 3434 C python3.8 428MiB |
+---------------------------------------------------------------------------------------+
V100 CUDA 11.4
[root@node02 ~]# nvidia-smi
Fri May 24 10:59:34 2024
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.57.02 Driver Version: 470.57.02 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla V100-PCIE... Off | 00000000:18:00.0 Off | 0 |
| N/A 44C P0 37W / 250W | 4846MiB / 16160MiB | 17% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla V100-PCIE... Off | 00000000:3B:00.0 Off | 0 |
| N/A 34C P0 26W / 250W | 4MiB / 16160MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 51555 C python3 3363MiB |
| 0 N/A N/A 76909 C python3.8 1479MiB |
+-----------------------------------------------------------------------------+
maybe the problem is caused by CUDA version, i see the project use CUDA 11.8, but in my machine, the version is not compatible for now
and the output videos meet wrong pixel data because the color space convert not work
i think the program deal with the video data as RGB24 but YUV420P, so the UV color data is wrong, and the Y data is also wrong in every single pixel, because it's 1 byte per single pixel as Y but 4 bytes as RGB24
when i want to run the enhance_demo, i meet the bug, i know it's from ffmpeg, but my computer is in CUDA environment, and the gpu was using by python when i run the demo, i test two computer, still same thing.
i use the docker you provided
docker pull babitmf/bmf_runtime:latest
1080Ti CUDA 12.2
V100 CUDA 11.4
maybe the problem is caused by CUDA version, i see the project use CUDA 11.8, but in my machine, the version is not compatible for now
i think the program deal with the video data as RGB24 but YUV420P, so the UV color data is wrong, and the Y data is also wrong in every single pixel, because it's 1 byte per single pixel as Y but 4 bytes as RGB24