Open a-mos opened 1 year ago
Hello! I am trying to get fully-reproducible pipeline, however with all seeds fixed i got different grad values on first iteration in single_circle.py app even with same loss value:
Fixing all seeds: import random import os seed = 0 torch.set_printoptions(precision=16) os.environ['PYTHONHASHSEED'] = str(seed) torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.benchmark = False torch.use_deterministic_algorithms(True) os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" torch.backends.cudnn.deterministic = True torch.backends.cudnn.enabled = False torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.set_deterministic_debug_mode(2)
Run1 python single_circle.py
iteration: 0 loss: 6360.21044921875 radius.grad: tensor(-6679.3833007812500000) center.grad: tensor([-16965.3789062500000000, 8691.6396484375000000])
Run2 python single_circle.py
iteration: 0 loss: 6360.21044921875 radius.grad: tensor(-6679.9208984375000000) center.grad: tensor([-16965.9726562500000000, 8691.4550781250000000])
Hello, I am facing the same issue. Did you manage to solve it? Thank you very much
Hello! I am trying to get fully-reproducible pipeline, however with all seeds fixed i got different grad values on first iteration in single_circle.py app even with same loss value:
Run1 python single_circle.py
Run2 python single_circle.py