BangguWu / ECANet

Code for ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
MIT License
1.28k stars 198 forks source link

RuntimeError: Error(s) in loading state_dict for ResNet: #54

Open ma3252788 opened 3 years ago

ma3252788 commented 3 years ago

I add the lines:

def eca_resnet50(k_size=[3, 3, 3, 3], num_classes=1000, pretrained=True):
    """Constructs a ResNet-50 model.

    Args:
        k_size: Adaptive selection of kernel size
        num_classes:The classes of classification
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    print("Constructing eca_resnet50......")
    print(pretrained)
    model = ResNet(ECABottleneck, [3, 4, 6, 3], num_classes=num_classes, k_size=k_size)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    if pretrained:
        model.load_state_dict(torch.load('eca_resnet50_k3557.pth.tar'))
    return model

When I torch.load the model, it shows:

Traceback (most recent call last):
  File "/home/ubuntu/bigdisk/part2/ECANet/main.py", line 414, in <module>
    main()
  File "/home/ubuntu/bigdisk/part2/ECANet/main.py", line 107, in main
    model = models.__dict__[args.arch](k_size=args.ksize)
  File "/home/ubuntu/bigdisk/part2/ECANet/models/eca_resnet.py", line 200, in eca_resnet50
    model.load_state_dict(torch.load('eca_resnet50_k3557.pth.tar'))
  File "/home/ubuntu/anaconda3/envs/augment/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1045, in load_state_dict
    self.__class__.__name__, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for ResNet:
    Missing key(s) in state_dict: "conv1.weight", "bn1.weight", "bn1.bias", "bn1.running_mean", "bn1.running_var", "layer1.0.conv1.weight", "layer1.0.bn1.weight", "layer1.0.bn1.bias", "layer1.0.bn1.running_mean", "layer1.0.bn1.running_var", "layer1.0.conv2.weight", "layer1.0.bn2.weight", "layer1.0.bn2.bias", "layer1.0.bn2.running_mean", "layer1.0.bn2.running_var", "layer1.0.conv3.weight", "layer1.0.bn3.weight", "layer1.0.bn3.bias", "layer1.0.bn3.running_mean", "layer1.0.bn3.running_var", "layer1.0.eca.conv.weight", "layer1.0.downsample.0.weight", "layer1.0.downsample.1.weight", "layer1.0.downsample.1.bias", "layer1.0.downsample.1.running_mean", "layer1.0.downsample.1.running_var", "layer1.1.conv1.weight", "layer1.1.bn1.weight", "layer1.1.bn1.bias", "layer1.1.bn1.running_mean", "layer1.1.bn1.running_var", "layer1.1.conv2.weight", "layer1.1.bn2.weight", "layer1.1.bn2.bias", "layer1.1.bn2.running_mean", "layer1.1.bn2.running_var", "layer1.1.conv3.weight", "layer1.1.bn3.weight", "layer1.1.bn3.bias", "layer1.1.bn3.running_mean", "layer1.1.bn3.running_var", "layer1.1.eca.conv.weight", "layer1.2.conv1.weight", "layer1.2.bn1.weight", "layer1.2.bn1.bias", "layer1.2.bn1.running_mean", "layer1.2.bn1.running_var", "layer1.2.conv2.weight", "layer1.2.bn2.weight", "layer1.2.bn2.bias", "layer1.2.bn2.running_mean", "layer1.2.bn2.running_var", "layer1.2.conv3.weight", "layer1.2.bn3.weight", "layer1.2.bn3.bias", "layer1.2.bn3.running_mean", "layer1.2.bn3.running_var", "layer1.2.eca.conv.weight", "layer2.0.conv1.weight", "layer2.0.bn1.weight", "layer2.0.bn1.bias", "layer2.0.bn1.running_mean", "layer2.0.bn1.running_var", "layer2.0.conv2.weight", "layer2.0.bn2.weight", "layer2.0.bn2.bias", "layer2.0.bn2.running_mean", "layer2.0.bn2.running_var", "layer2.0.conv3.weight", "layer2.0.bn3.weight", "layer2.0.bn3.bias", "layer2.0.bn3.running_mean", "layer2.0.bn3.running_var", "layer2.0.eca.conv.weight", "layer2.0.downsample.0.weight", "layer2.0.downsample.1.weight", "layer2.0.downsample.1.bias", "layer2.0.downsample.1.running_mean", "layer2.0.downsample.1.running_var", "layer2.1.conv1.weight", "layer2.1.bn1.weight", "layer2.1.bn1.bias", "layer2.1.bn1.running_mean", "layer2.1.bn1.running_var", "layer2.1.conv2.weight", "layer2.1.bn2.weight", "layer2.1.bn2.bias", "layer2.1.bn2.running_mean", "layer2.1.bn2.running_var", "layer2.1.conv3.weight", "layer2.1.bn3.weight", "layer2.1.bn3.bias", "layer2.1.bn3.running_mean", "layer2.1.bn3.running_var", "layer2.1.eca.conv.weight", "layer2.2.conv1.weight", "layer2.2.bn1.weight", "layer2.2.bn1.bias", "layer2.2.bn1.running_mean", "layer2.2.bn1.running_var", "layer2.2.conv2.weight", "layer2.2.bn2.weight", "layer2.2.bn2.bias", "layer2.2.bn2.running_mean", "layer2.2.bn2.running_var", "layer2.2.conv3.weight", "layer2.2.bn3.weight", "layer2.2.bn3.bias", "layer2.2.bn3.running_mean", "layer2.2.bn3.running_var", "layer2.2.eca.conv.weight", "layer2.3.conv1.weight", "layer2.3.bn1.weight", "layer2.3.bn1.bias", "layer2.3.bn1.running_mean", "layer2.3.bn1.running_var", "layer2.3.conv2.weight", "layer2.3.bn2.weight", "layer2.3.bn2.bias", "layer2.3.bn2.running_mean", "layer2.3.bn2.running_var", "layer2.3.conv3.weight", "layer2.3.bn3.weight", "layer2.3.bn3.bias", "layer2.3.bn3.running_mean", "layer2.3.bn3.running_var", "layer2.3.eca.conv.weight", "layer3.0.conv1.weight", "layer3.0.bn1.weight", "layer3.0.bn1.bias", "layer3.0.bn1.running_mean", "layer3.0.bn1.running_var", "layer3.0.conv2.weight", "layer3.0.bn2.weight", "layer3.0.bn2.bias", "layer3.0.bn2.running_mean", "layer3.0.bn2.running_var", "layer3.0.conv3.weight", "layer3.0.bn3.weight", "layer3.0.bn3.bias", "layer3.0.bn3.running_mean", "layer3.0.bn3.running_var", "layer3.0.eca.conv.weight", "layer3.0.downsample.0.weight", "layer3.0.downsample.1.weight", "layer3.0.downsample.1.bias", "layer3.0.downsample.1.running_mean", "layer3.0.downsample.1.running_var", "layer3.1.conv1.weight", "layer3.1.bn1.weight", "layer3.1.bn1.bias", "layer3.1.bn1.running_mean", "layer3.1.bn1.running_var", "layer3.1.conv2.weight", "layer3.1.bn2.weight", "layer3.1.bn2.bias", "layer3.1.bn2.running_mean", "layer3.1.bn2.running_var", "layer3.1.conv3.weight", "layer3.1.bn3.weight", "layer3.1.bn3.bias", "layer3.1.bn3.running_mean", "layer3.1.bn3.running_var", "layer3.1.eca.conv.weight", "layer3.2.conv1.weight", "layer3.2.bn1.weight", "layer3.2.bn1.bias", "layer3.2.bn1.running_mean", "layer3.2.bn1.running_var", "layer3.2.conv2.weight", "layer3.2.bn2.weight", "layer3.2.bn2.bias", "layer3.2.bn2.running_mean", "layer3.2.bn2.running_var", "layer3.2.conv3.weight", "layer3.2.bn3.weight", "layer3.2.bn3.bias", "layer3.2.bn3.running_mean", "layer3.2.bn3.running_var", "layer3.2.eca.conv.weight", "layer3.3.conv1.weight", "layer3.3.bn1.weight", "layer3.3.bn1.bias", "layer3.3.bn1.running_mean", "layer3.3.bn1.running_var", "layer3.3.conv2.weight", "layer3.3.bn2.weight", "layer3.3.bn2.bias", "layer3.3.bn2.running_mean", "layer3.3.bn2.running_var", "layer3.3.conv3.weight", "layer3.3.bn3.weight", "layer3.3.bn3.bias", "layer3.3.bn3.running_mean", "layer3.3.bn3.running_var", "layer3.3.eca.conv.weight", "layer3.4.conv1.weight", "layer3.4.bn1.weight", "layer3.4.bn1.bias", "layer3.4.bn1.running_mean", "layer3.4.bn1.running_var", "layer3.4.conv2.weight", "layer3.4.bn2.weight", "layer3.4.bn2.bias", "layer3.4.bn2.running_mean", "layer3.4.bn2.running_var", "layer3.4.conv3.weight", "layer3.4.bn3.weight", "layer3.4.bn3.bias", "layer3.4.bn3.running_mean", "layer3.4.bn3.running_var", "layer3.4.eca.conv.weight", "layer3.5.conv1.weight", "layer3.5.bn1.weight", "layer3.5.bn1.bias", "layer3.5.bn1.running_mean", "layer3.5.bn1.running_var", "layer3.5.conv2.weight", "layer3.5.bn2.weight", "layer3.5.bn2.bias", "layer3.5.bn2.running_mean", "layer3.5.bn2.running_var", "layer3.5.conv3.weight", "layer3.5.bn3.weight", "layer3.5.bn3.bias", "layer3.5.bn3.running_mean", "layer3.5.bn3.running_var", "layer3.5.eca.conv.weight", "layer4.0.conv1.weight", "layer4.0.bn1.weight", "layer4.0.bn1.bias", "layer4.0.bn1.running_mean", "layer4.0.bn1.running_var", "layer4.0.conv2.weight", "layer4.0.bn2.weight", "layer4.0.bn2.bias", "layer4.0.bn2.running_mean", "layer4.0.bn2.running_var", "layer4.0.conv3.weight", "layer4.0.bn3.weight", "layer4.0.bn3.bias", "layer4.0.bn3.running_mean", "layer4.0.bn3.running_var", "layer4.0.eca.conv.weight", "layer4.0.downsample.0.weight", "layer4.0.downsample.1.weight", "layer4.0.downsample.1.bias", "layer4.0.downsample.1.running_mean", "layer4.0.downsample.1.running_var", "layer4.1.conv1.weight", "layer4.1.bn1.weight", "layer4.1.bn1.bias", "layer4.1.bn1.running_mean", "layer4.1.bn1.running_var", "layer4.1.conv2.weight", "layer4.1.bn2.weight", "layer4.1.bn2.bias", "layer4.1.bn2.running_mean", "layer4.1.bn2.running_var", "layer4.1.conv3.weight", "layer4.1.bn3.weight", "layer4.1.bn3.bias", "layer4.1.bn3.running_mean", "layer4.1.bn3.running_var", "layer4.1.eca.conv.weight", "layer4.2.conv1.weight", "layer4.2.bn1.weight", "layer4.2.bn1.bias", "layer4.2.bn1.running_mean", "layer4.2.bn1.running_var", "layer4.2.conv2.weight", "layer4.2.bn2.weight", "layer4.2.bn2.bias", "layer4.2.bn2.running_mean", "layer4.2.bn2.running_var", "layer4.2.conv3.weight", "layer4.2.bn3.weight", "layer4.2.bn3.bias", "layer4.2.bn3.running_mean", "layer4.2.bn3.running_var", "layer4.2.eca.conv.weight", "fc.weight", "fc.bias". 
    Unexpected key(s) in state_dict: "epoch", "arch", "state_dict", "best_prec1", "optimizer". 
haha9464 commented 3 years ago

Hi, I have met the same trouble as you. So did you fix this problem? Thanks!