Single cell reference data: number of cells, number of cell types, number of genes
~20000 cell, 26 clusters, ~5000 marker genes
...
Single cell reference data: technology type (e.g. mix of 10X 3' and 5')
10X3' v3
...
Spatial data: number of locations numbers, technology type (e.g. Visium, ISS, Nanostring WTA)
Visium
Question
Hej,
Thank you very much for this awesome tool. I just followed the pipeline and everything went very well. In terms of interpreting the results, I know it is better to use the 'q05_cell_abundance_w_sf' as deconvolution results to project into the H&E images. But what does the values of confident cell abundance of each cell type means? I summed up those values in each row, but the total is quite different which makes me a little bit confused. More specifically, I have 26 clusters as below, I wonder if it is reasonable that I can calculate the relative cell type proportion for each spot (e.g. relative proportion of Basal-I in spot 1 = 0.0788311/5.16249044)? That may be easy for us to understand if the total amount of each spot equals to 1, we could compare the results of different cell types directly.
Interpretation of the deconvolution results
N_cells_per_location
anddetection_alpha
.batch_key
for reference NB regression.Description of the data input and hyperparameters
Single cell reference data: number of cells, number of cell types, number of genes
~20000 cell, 26 clusters, ~5000 marker genes ...
Single cell reference data: technology type (e.g. mix of 10X 3' and 5')
10X3' v3 ...
Spatial data: number of locations numbers, technology type (e.g. Visium, ISS, Nanostring WTA)
Visium
Question
Hej, Thank you very much for this awesome tool. I just followed the pipeline and everything went very well. In terms of interpreting the results, I know it is better to use the 'q05_cell_abundance_w_sf' as deconvolution results to project into the H&E images. But what does the values of confident cell abundance of each cell type means? I summed up those values in each row, but the total is quite different which makes me a little bit confused. More specifically, I have 26 clusters as below, I wonder if it is reasonable that I can calculate the relative cell type proportion for each spot (e.g. relative proportion of Basal-I in spot 1 = 0.0788311/5.16249044)? That may be easy for us to understand if the total amount of each spot equals to 1, we could compare the results of different cell types directly.
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:x="urn:schemas-microsoft-com:office:excel" xmlns="http://www.w3.org/TR/REC-html40">
cell2location results Spatial_SpotID | Basal-I | Basal-II | Basal-III | DC | DC-LAMP | Dermal-DC | FB-I | FB-II | FB-III | FB-IV | Granular-I | Granular-II | LC | LE | MEL | Mast-cell | Mono-Mac | NK-cell | PC-vSMC | Plasma-B-cell | Schwann | Spinous-I | Spinous-II | Spinous-III | Th | VE | Total -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- AAACAAGTATCTCCCA-1 | 0.0788311 | 0.01183488 | 0.0013773 | 0.0066458 | 0.00330211 | 0.00185754 | 0.82047006 | 0.06403197 | 3.31677738 | 0.00127522 | 0.00188847 | 0.02291755 | 0.10469464 | 0.12440987 | 0.02615497 | 0.05246331 | 0.04863389 | 0.01683048 | 0.03649302 | 0.00685662 | 0.00687596 | 0.2401821 | 0.10762781 | 0.0053093 | 0.03440755 | 0.02034153 | 5.16249044 AAACATTTCCCGGATT-1 | 0.00802813 | 0.00075149 | 0.0022309 | 0.00468953 | 0.00162133 | 0.00118663 | 0.31470423 | 0.02221218 | 1.92233016 | 0.00103692 | 0.00336535 | 0.00105805 | 0.0251716 | 0.01604621 | 0.02824159 | 0.06488496 | 0.02648281 | 0.00788521 | 0.07540033 | 0.00343071 | 0.02093353 | 0.00931369 | 0.00423436 | 0.00128129 | 0.01348818 | 0.00388846 | 2.58389782 AAACCTAAGCAGCCGG-1 | 0.11836652 | 0.01075403 | 0.02144423 | 0.10995266 | 0.09720989 | 0.05960494 | 0.00045867 | 0.43426276 | 0.01384732 | 0.02475756 | 0.00795721 | 0.00277988 | 0.31790655 | 0.21364005 | 1.84851403 | 0.09111738 | 0.12857315 | 0.14189067 | 1.42056299 | 0.1412995 | 0.54924091 | 0.13600109 | 0.12423333 | 5.46599512 | 0.66547016 | 0.68631223 | 12.8321528 AAACGAGACGGTTGAT-1 | 0.04039945 | 0.00090433 | 0.00193628 | 0.00361877 | 0.00120299 | 0.00109853 | 0.18939618 | 0.03465241 | 3.35178006 | 0.00105741 | 0.00070539 | 0.05037835 | 0.04513825 | 0.00694101 | 0.02586368 | 0.0677819 | 0.02174506 | 0.01301383 | 0.00370227 | 0.00310089 | 0.00597889 | 0.06166198 | 0.01398668 | 0.0010241 | 0.01857916 | 0.00215477 | 3.96780262