Open VojtechW opened 1 year ago
It seems that the analytical method for KerrGeoOrbit returns expressions that are not manifestly real for $a=0$.
KerrGeoOrbit
MWE: orbit = KerrGeoOrbit[0, 20, 0.9, Cos[\[Pi]/8]]; {t, r, \[Theta], \[CurlyPhi]} = orbit["Trajectory"]; Show[ParametricPlot3D[{r[\[Lambda]] Sin[\[Theta][\[Lambda]]] Cos[\ \[CurlyPhi][\[Lambda]]], r[\[Lambda]] Sin[\[Theta][\[Lambda]]] Sin[\[CurlyPhi][\[Lambda]]], r[\[Lambda]] Cos[\[Theta][\[Lambda]]]}, {\[Lambda], 0, 20}, ImageSize -> 700, Boxed -> False, Axes -> False, PlotStyle -> Red, PlotRange -> All], Graphics3D[{Black, Sphere[{0, 0, 0}, 2]}]]
orbit = KerrGeoOrbit[0, 20, 0.9, Cos[\[Pi]/8]];
{t, r, \[Theta], \[CurlyPhi]} = orbit["Trajectory"];
Show[ParametricPlot3D[{r[\[Lambda]] Sin[\[Theta][\[Lambda]]] Cos[\ \[CurlyPhi][\[Lambda]]], r[\[Lambda]] Sin[\[Theta][\[Lambda]]] Sin[\[CurlyPhi][\[Lambda]]], r[\[Lambda]] Cos[\[Theta][\[Lambda]]]}, {\[Lambda], 0, 20}, ImageSize -> 700, Boxed -> False, Axes -> False, PlotStyle -> Red, PlotRange -> All], Graphics3D[{Black, Sphere[{0, 0, 0}, 2]}]]
Returns
This appears for any $p,e,x$ at $a=0$.
I am not sure why this error appears as the trajectory evaluates just fine and the plot also works. The error message only appears with ParametricPlot3D, and does not appear if you instead use a Table.
It seems that the analytical method for
KerrGeoOrbit
returns expressions that are not manifestly real for $a=0$.MWE:
orbit = KerrGeoOrbit[0, 20, 0.9, Cos[\[Pi]/8]];
{t, r, \[Theta], \[CurlyPhi]} = orbit["Trajectory"];
Show[ParametricPlot3D[{r[\[Lambda]] Sin[\[Theta][\[Lambda]]] Cos[\ \[CurlyPhi][\[Lambda]]], r[\[Lambda]] Sin[\[Theta][\[Lambda]]] Sin[\[CurlyPhi][\[Lambda]]], r[\[Lambda]] Cos[\[Theta][\[Lambda]]]}, {\[Lambda], 0, 20}, ImageSize -> 700, Boxed -> False, Axes -> False, PlotStyle -> Red, PlotRange -> All], Graphics3D[{Black, Sphere[{0, 0, 0}, 2]}]]
Returns
This appears for any $p,e,x$ at $a=0$.