Closed randerzander closed 4 years ago
Environment: latest 0.13 nightly conda packages
(rapids) root@dgx01:/# conda list | grep rapids # packages in environment at /conda/envs/rapids: bsql-rapids-thirdparty 0.13.0a 0 blazingsql-nightly cudf 0.13.0a200204 py37_1242 rapidsai-nightly cugraph 0.13.0a200204 py37_95 rapidsai-nightly cuml 0.13.0a200203 cuda10.0_py37_103 rapidsai-nightly cuspatial 0.13.0a200204 py37_7 rapidsai-nightly dask-cuda 0.13.0a200204 py37_40 rapidsai-nightly dask-cudf 0.13.0a200204 py37_1242 rapidsai-nightly dask-xgboost 0.2.0.dev28 cuda10.0py36_0 rapidsai-nightly libcudf 0.13.0a200204 cuda10.0_1242 rapidsai-nightly libcugraph 0.13.0a200204 cuda10.0_95 rapidsai-nightly libcuml 0.13.0a200203 cuda10.0_103 rapidsai-nightly libcumlprims 0.13.0a200204 cuda10.0_9 rapidsai-nightly libcuspatial 0.13.0a200204 cuda10.0_7 rapidsai-nightly libnvstrings 0.13.0a200204 cuda10.0_1242 rapidsai-nightly librmm 0.13.0a200204 cuda10.0_143 rapidsai-nightly libxgboost 1.0.0dev.rapidsai0.12 cuda10.0_1 rapidsai-nightly nvstrings 0.13.0a200204 py37_1242 rapidsai-nightly py-xgboost 1.0.0dev.rapidsai0.12 cuda10.0py37_1 rapidsai-nightly rapids 0.13.0 cuda10.0_py37_1 rapidsai-nightly rapids-xgboost 0.13.0 cuda10.0_py37_1 rapidsai-nightly rmm 0.13.0a200204 py37_143 rapidsai-nightly ucx 1.7.0dev+g9d06c3a cuda10.0_129 rapidsai-nightly ucx-py 0.13.0a200123+g896e60b py37_12 rapidsai-nightly xgboost 1.0.0dev.rapidsai0.12 cuda10.0py37_1 rapidsai-nightly (rapids) root@dgx01:/# conda list | grep blazing blazingsql 0.13.0a cuda10.0_py37_16 blazingsql-nightly/label/cuda10.0 bsql-rapids-thirdparty 0.13.0a 0 blazingsql-nightly bsql-toolchain 0.13.0a 0 blazingsql-nightly bsql-toolchain-aws-cpp 0.13.0a 0 blazingsql-nightly bsql-toolchain-gcp-cpp 0.13.0a 0 blazingsql-nightly
Following the LocalCUDACluster multi-GPU setup from the docs
from blazingsql import BlazingContext from dask_cuda import LocalCUDACluster from dask.distributed import Client import pandas as pd cluster = LocalCUDACluster() client = Client(cluster) bc = BlazingContext(dask_client = client, network_interface = 'lo') # create a test file df = pd.DataFrame() df['id'] = [0, 1, 2, 2, 3] df['val'] = [0, 1, 2, 2, 3] df.to_parquet('test.parquet') bc.create_table('test', 'test.parquet') ddf = bc.sql('select * from test limit 10')
--------------------------------------------------------------------------- UnboundLocalError Traceback (most recent call last) <ipython-input-15-039e1e517fba> in <module> 5 6 # query table ----> 7 ddf = bc.sql(query) 8 ddf.head() /conda/envs/rapids/lib/python3.7/site-packages/pyblazing/apiv2/context.py in sql(self, sql, table_list, algebra) 713 j = 0 714 for nodeList in nodeTableList: --> 715 nodeList[table] = currentTableNodes[j] 716 j = j + 1 717 scan_table_query = relational_algebra_steps[table]['table_scans'][0] UnboundLocalError: local variable 'currentTableNodes' referenced before assignment
Fixed by specifying the full path to the file instead of assuming the test file could be found in the current working directory.
Environment: latest 0.13 nightly conda packages
Following the LocalCUDACluster multi-GPU setup from the docs