BrainCog-X / Brain-Cog

Brain-inspired Cognitive Intelligence Engine (BrainCog) is a brain-inspired spiking neural network based platform for Brain-inspired Artificial Intelligence and simulating brains at multiple scales. The long term goal of BrainCog is to provide a comprehensive theory and system to decode the mechanisms and principles of human intelligence and its evolution, and develop artificial brains for brain-inspired conscious living AI in future Human-AI symbiotic Society.
http://www.brain-cog.network/
Apache License 2.0
456 stars 71 forks source link

使用BrainCog模拟RMSNorm,最终输出为nan #179

Open LumenScope opened 8 months ago

LumenScope commented 8 months ago
class SNN_RMSNorm(nn.Module):
    def __init__(self, max_length = 128, hidden_size=4096,node=LIAFNode, threshold=0.5, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.rms_neuron = node(act_fun='LeakyReLU', threshold=threshold)
        self.weight_neuron = node(act_fun='ReLU', threshold=threshold)
        self.weight = nn.Parameter(torch.ones(hidden_size,hidden_size))
        self.rms_connection = CustomLinear(torch.ones(1,hidden_size))
        self.weight_connection = CustomLinear(self.weight)

    def forward(self, x):
        x_sqr = x ** 2
        x_rms = x_sqr.mean(-1, keepdim=True)
        s_rms = self.rms_neuron(self.rms_connection(x_rms))
        rms_out = torch.rsqrt(s_rms + self.eps)
        s_scale = self.weight_neuron(self.weight_connection(rms_out))
        return s_scale

class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        """
        Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The normalized tensor.

        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.

        """
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

以上为我定义的SNN化RMSNorm和原始RMSNorm函数,以下为SNN_RMSNorm前向传播的输出,虽然维度shape经过我的处理达到了一致,但是输出如下:

tensor([[[nan, nan, nan,  ..., nan, nan, nan],
         [nan, nan, nan,  ..., nan, nan, nan],
         [nan, nan, nan,  ..., nan, nan, nan],
         ...,
         [nan, nan, nan,  ..., nan, nan, nan],
         [nan, nan, nan,  ..., nan, nan, nan],
         [nan, nan, nan,  ..., nan, nan, nan]],

        [[nan, nan, nan,  ..., nan, nan, nan],
         [nan, nan, nan,  ..., nan, nan, nan],
         [nan, nan, nan,  ..., nan, nan, nan],
         ...,
         [nan, nan, nan,  ..., nan, nan, nan],
         [nan, nan, nan,  ..., nan, nan, nan],
         [nan, nan, nan,  ..., nan, nan, nan]]], device='cuda:0',
       grad_fn=<StackBackward0>)
torch.Size([2, 128, 4096])

以下为全部代码:

from torchvision import transforms
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
from spikingjelly.clock_driven.neuron import MultiStepLIFNode, MultiStepParametricLIFNode
from transformers import CLIPProcessor, CLIPModel
from accelerate import Accelerator
from dataclasses import dataclass
from typing import Optional, Tuple

import fairscale.nn.model_parallel.initialize as fs_init
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, ParallelEmbedding, RowParallelLinear

import numpy as np
import os
import sys
from torch.nn import Parameter
import abc
from abc import ABC
from einops import rearrange, repeat

accelerator = Accelerator()

@dataclass
class ModelArgs:
    dim: int = 4096
    n_layers: int = 32
    n_heads: int = 32
    n_kv_heads: Optional[int] = None
    vocab_size: int = -1  # defined later by tokenizer
    multiple_of: int = 256  # make SwiGLU hidden layer size multiple of large power of 2
    ffn_dim_multiplier: Optional[float] = None
    norm_eps: float = 1e-5

    max_batch_size: int = 32
    max_seq_len: int = 2048

class CustomLinear(nn.Module):
    """
    用户自定义连接 通常stdp的计算
    """

    def __init__(self, weight, mask=None):
        super().__init__()

        self.weight = nn.Parameter(weight, requires_grad=True)
        self.mask = mask

    def forward(self, x: torch.Tensor):
        """
        :param x:输入 x.shape = [N ]
        """
        #
        # ret.shape = [C]

        return x.matmul(self.weight)

    def update(self, dw):
        """
        :param dw:权重更新量
        """
        with torch.no_grad():
            if self.mask is not None:
                dw *= self.mask
            self.weight.data += dw

class STDP(nn.Module):
    """
    STDP learning rule
    """

    def __init__(self, node, connection, decay=0.99):
        """
        :param node:node神经元类型实例如IFNode LIFNode
        :param connection:连接 类的实例 里面只能有一个操作
        """
        super().__init__()

        self.node = node
        self.connection = connection
        self.trace = None
        self.decay = decay

    def forward(self, x):
        """
        计算前向传播过程
        :return:s是脉冲 dw更新量
        """
        x = x.clone().detach()
        i = self.connection(x)
        with torch.no_grad():
            s = self.node(i)

            i.data += s - i.data
            trace = self.cal_trace(x)
            x.data += trace - x.data

        dw = torch.autograd.grad(
            outputs=i, inputs=self.connection.weight, grad_outputs=i)

        return s, dw

    def cal_trace(self, x):
        """
        计算trace
        """
        if self.trace is None:
            self.trace = Parameter(x.clone().detach(), requires_grad=False)
        else:
            self.trace *= self.decay
            self.trace += x
        return self.trace.detach()

    def reset(self):
        """
        重置
        """
        self.trace = None

def heaviside(x):
    return (x >= 0.).to(x.dtype)

class quadratic_gate(torch.autograd.Function):
    """
    使用 quadratic_gate 作为代理梯度函数
    对应的原函数为:

    .. math::
        g(x) =
        \\begin{cases}
        0, & x < -\\frac{1}{\\alpha} \\\\
        -\\frac{1}{2}\\alpha^2|x|x + \\alpha x + \\frac{1}{2}, & |x| \\leq \\frac{1}{\\alpha}  \\\\
        1, & x > \\frac{1}{\\alpha} \\\\
        \\end{cases}

    反向传播的函数为:

    .. math::
        g'(x) =
        \\begin{cases}
        0, & |x| > \\frac{1}{\\alpha} \\\\
        -\\alpha^2|x|+\\alpha, & |x| \\leq \\frac{1}{\\alpha}
        \\end{cases}

    """

    @staticmethod
    def forward(ctx, x, alpha):
        if x.requires_grad:
            mask_zero = (x.abs() > 1 / alpha)
            grad_x = -alpha * alpha * x.abs() + alpha
            grad_x.masked_fill_(mask_zero, 0)
            ctx.save_for_backward(grad_x)
        return x.gt(0.).float()

    @staticmethod
    def backward(ctx, grad_output):
        grad_x = None
        if ctx.needs_input_grad[0]:
            grad_x = grad_output * ctx.saved_tensors[0]
        return grad_x, None

class SurrogateFunctionBase(nn.Module):
    """
    Surrogate Function 的基类
    :param alpha: 为一些能够调控函数形状的代理函数提供参数.
    :param requires_grad: 参数 ``alpha`` 是否需要计算梯度, 默认为 ``False``
    """

    def __init__(self, alpha, requires_grad=True):
        super().__init__()
        self.alpha = nn.Parameter(
            torch.tensor(alpha, dtype=torch.float),
            requires_grad=requires_grad)

    @staticmethod
    def act_fun(x, alpha):
        """
        :param x: 膜电位的输入
        :param alpha: 控制代理梯度形状的变量, 可以为 ``NoneType``
        :return: 激发之后的spike, 取值为 ``[0, 1]``
        """
        raise NotImplementedError

    def forward(self, x):
        """
        :param x: 膜电位输入
        :return: 激发之后的spike
        """
        return self.act_fun(x, self.alpha)

'''
    sigmoid surrogate function.
'''

class QGateGrad(SurrogateFunctionBase):
    def __init__(self, alpha=2., requires_grad=False):
        super().__init__(alpha, requires_grad)

    @staticmethod
    def act_fun(x, alpha):
        return quadratic_gate.apply(x, alpha)

class relu_like(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, alpha):
        if x.requires_grad:
            ctx.save_for_backward(x, alpha)
        return heaviside(x)

    @staticmethod
    def backward(ctx, grad_output):
        grad_x, grad_alpha = None, None
        x, alpha = ctx.saved_tensors
        if ctx.needs_input_grad[0]:
            grad_x = grad_output * x.gt(0.).float() * alpha
        if ctx.needs_input_grad[1]:
            grad_alpha = (grad_output * F.relu(x)).sum()
        return grad_x, grad_alpha

class RoundGrad(nn.Module):
    def __init__(self, **kwargs):
        super(RoundGrad, self).__init__()
        self.act = nn.Hardtanh(-.5, 4.5)

    def forward(self, x):
        x = self.act(x)
        return x.ceil() + x - x.detach()

class backeigate(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input):
        ctx.save_for_backward(input)
        return input.gt(0.).float()

    @staticmethod
    def backward(ctx, grad_output):
        input, = ctx.saved_tensors
        grad_input = grad_output.clone()
        temp = abs(input) < 0.5
        return grad_input * temp.float()

class BackEIGateGrad(SurrogateFunctionBase):
    def __init__(self, alpha=2., requires_grad=False):
        super().__init__(alpha, requires_grad)

    @staticmethod
    def act_fun(x, alpha):
        return backeigate.apply(x)

class ei(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input):
        ctx.save_for_backward(input)
        return torch.sign(input).float()

    @staticmethod
    def backward(ctx, grad_output):
        input, = ctx.saved_tensors
        grad_input = grad_output.clone()
        temp = abs(input) < 0.5
        return grad_input * temp.float()

class BaseNode(nn.Module, abc.ABC):
    """
    神经元模型的基类
    :param threshold: 神经元发放脉冲需要达到的阈值
    :param v_reset: 静息电位
    :param dt: 时间步长
    :param step: 仿真步
    :param requires_thres_grad: 是否需要计算对于threshold的梯度, 默认为 ``False``
    :param sigmoid_thres: 是否使用sigmoid约束threshold的范围搭到 [0, 1], 默认为 ``False``
    :param requires_fp: 是否需要在推理过程中保存feature map, 需要消耗额外的内存和时间, 默认为 ``False``
    :param layer_by_layer: 是否以一次性计算所有step的输出, 在网络模型较大的情况下, 一般会缩短单次推理的时间, 默认为 ``False``
    :param n_groups: 在不同的时间步, 是否使用不同的权重, 默认为 ``1``, 即不分组
    :param mem_detach: 是否将上一时刻的膜电位在计算图中截断
    :param args: 其他的参数
    :param kwargs: 其他的参数
    """

    def __init__(self,
                 threshold=.5,
                 v_reset=0.,
                 dt=1.,
                 step=8,
                 requires_thres_grad=False,
                 sigmoid_thres=False,
                 requires_fp=False,
                 layer_by_layer=False,
                 n_groups=1,
                 *args,
                 **kwargs):

        super(BaseNode, self).__init__()
        self.threshold = Parameter(torch.tensor(
            threshold), requires_grad=requires_thres_grad)
        self.sigmoid_thres = sigmoid_thres
        self.mem = 0.
        self.spike = 0.
        self.dt = dt
        self.feature_map = []
        self.mem_collect = []
        self.requires_fp = requires_fp
        self.v_reset = v_reset
        self.step = step
        self.layer_by_layer = layer_by_layer
        self.groups = n_groups
        self.mem_detach = kwargs['mem_detach'] if 'mem_detach' in kwargs else False
        self.requires_mem = kwargs['requires_mem'] if 'requires_mem' in kwargs else False

    @abc.abstractmethod
    def calc_spike(self):
        """
        通过当前的mem计算是否发放脉冲,并reset
        :return: None
        """

        pass

    def integral(self, inputs):
        """
        计算由当前inputs对于膜电势的累积
        :param inputs: 当前突触输入电流
        :type inputs: torch.tensor
        :return: None
        """

        pass

    def get_thres(self):
        return self.threshold if not self.sigmoid_thres else self.threshold.sigmoid()

    def rearrange2node(self, inputs):
        if self.groups != 1:
            if len(inputs.shape) == 4:
                outputs = rearrange(
                    inputs, 'b (c t) w h -> t b c w h', t=self.step)
            elif len(inputs.shape) == 2:
                outputs = rearrange(inputs, 'b (c t) -> t b c', t=self.step)
            else:
                raise NotImplementedError

        elif self.layer_by_layer:
            if len(inputs.shape) == 4:
                outputs = rearrange(
                    inputs, '(t b) c w h -> t b c w h', t=self.step)
            elif len(inputs.shape) == 3:
                outputs = rearrange(
                    inputs, '(t b) n c -> t b n c', t=self.step)
            elif len(inputs.shape) == 2:
                outputs = rearrange(inputs, '(t b) c -> t b c', t=self.step)
            else:
                raise NotImplementedError

        else:
            outputs = inputs

        return outputs

    def rearrange2op(self, inputs):
        if self.groups != 1:
            if len(inputs.shape) == 5:
                outputs = rearrange(inputs, 't b c w h -> b (c t) w h')
            elif len(inputs.shape) == 3:
                outputs = rearrange(inputs, ' t b c -> b (c t)')
            else:
                raise NotImplementedError
        elif self.layer_by_layer:
            if len(inputs.shape) == 5:
                outputs = rearrange(inputs, 't b c w h -> (t b) c w h')
            elif len(inputs.shape) == 4:
                outputs = rearrange(inputs, ' t b n c -> (t b) n c')
            elif len(inputs.shape) == 3:
                outputs = rearrange(inputs, ' t b c -> (t b) c')
            else:
                raise NotImplementedError

        else:
            outputs = inputs

        return outputs

    def forward(self, inputs):
        """
        torch.nn.Module 默认调用的函数,用于计算膜电位的输入和脉冲的输出
        在```self.requires_fp is True``` 的情况下,可以使得```self.feature_map```用于记录trace
        :param inputs: 当前输入的膜电位
        :return: 输出的脉冲
        """

        if self.layer_by_layer or self.groups != 1:
            inputs = self.rearrange2node(inputs)

            outputs = []
            for i in range(self.step):

                if self.mem_detach and hasattr(self.mem, 'detach'):
                    self.mem = self.mem.detach()
                    self.spike = self.spike.detach()
                self.integral(inputs[i])

                self.calc_spike()

                if self.requires_fp is True:
                    self.feature_map.append(self.spike)
                if self.requires_mem is True:
                    self.mem_collect.append(self.mem)
                outputs.append(self.spike)
            outputs = torch.stack(outputs)

            outputs = self.rearrange2op(outputs)
            return outputs
        else:
            if self.mem_detach and hasattr(self.mem, 'detach'):
                self.mem = self.mem.detach()
                self.spike = self.spike.detach()
            self.integral(inputs)
            self.calc_spike()
            if self.requires_fp is True:
                self.feature_map.append(self.spike)
            if self.requires_mem is True:
                self.mem_collect.append(self.mem)
            return self.spike

    def n_reset(self):
        """
        神经元重置,用于模型接受两个不相关输入之间,重置神经元所有的状态
        :return: None
        """
        self.mem = self.v_reset
        self.spike = 0.
        self.feature_map = []
        self.mem_collect = []

    def get_n_attr(self, attr):

        if hasattr(self, attr):
            return getattr(self, attr)
        else:
            return None

    def set_n_warm_up(self, flag):
        """
        一些训练策略会在初始的一些epoch,将神经元视作ANN的激活函数训练,此为设置是否使用该方法训练
        :param flag: True:神经元变为激活函数, False:不变
        :return: None
        """
        self.warm_up = flag

    def set_n_threshold(self, thresh):
        """
        动态设置神经元的阈值
        :param thresh: 阈值
        :return:
        """
        self.threshold = Parameter(torch.tensor(
            thresh, dtype=torch.float), requires_grad=False)

    def set_n_tau(self, tau):
        """
        动态设置神经元的衰减系数,用于带Leaky的神经元
        :param tau: 衰减系数
        :return:
        """
        if hasattr(self, 'tau'):
            self.tau = Parameter(torch.tensor(
                tau, dtype=torch.float), requires_grad=False)
        else:
            raise NotImplementedError

class LIFNode(BaseNode):
    """
    Leaky Integrate and Fire
    :param threshold: 神经元发放脉冲需要达到的阈值
    :param v_reset: 静息电位
    :param dt: 时间步长
    :param step: 仿真步
    :param tau: 膜电位时间常数, 用于控制膜电位衰减
    :param act_fun: 使用surrogate gradient 对梯度进行近似, 默认为 ``surrogate.AtanGrad``
    :param requires_thres_grad: 是否需要计算对于threshold的梯度, 默认为 ``False``
    :param sigmoid_thres: 是否使用sigmoid约束threshold的范围搭到 [0, 1], 默认为 ``False``
    :param requires_fp: 是否需要在推理过程中保存feature map, 需要消耗额外的内存和时间, 默认为 ``False``
    :param layer_by_layer: 是否以一次性计算所有step的输出, 在网络模型较大的情况下, 一般会缩短单次推理的时间, 默认为 ``False``
    :param n_groups: 在不同的时间步, 是否使用不同的权重, 默认为 ``1``, 即不分组
    :param args: 其他的参数
    :param kwargs: 其他的参数
    """

    def __init__(self, threshold=0.5, tau=2., act_fun=QGateGrad, *args, **kwargs):
        super().__init__(threshold, *args, **kwargs)
        self.tau = tau
        if isinstance(act_fun, str):
            act_fun = eval(act_fun)
        self.act_fun = act_fun(alpha=2., requires_grad=False)
        # self.threshold = threshold
        # print(threshold)
        # print(tau)

    def integral(self, inputs):
        self.mem = self.mem + (inputs - self.mem) / self.tau

    def calc_spike(self):
        self.spike = self.act_fun(self.mem - self.threshold)
        self.mem = self.mem * (1 - self.spike.detach())

class LIAFNode(BaseNode):
    """
    Leaky Integrate and Analog Fire (LIAF), Reference: https://ieeexplore.ieee.org/abstract/document/9429228
    与LIF相同, 但前传的是膜电势, 更新沿用阈值和膜电势
    :param act_fun: 前传使用的激活函数 [ReLU, SeLU, LeakyReLU]
    :param threshold_related: 阈值依赖模式,若为"True"则 self.spike = act_fun(mem-threshold)
    :note that BaseNode return self.spike, and here self.spike is analog value.
    """

    def __init__(self, spike_act=BackEIGateGrad(), act_fun="SELU", threshold=0.5, tau=2., threshold_related=True, *args, **kwargs):
        super().__init__(threshold, *args, **kwargs)
        if isinstance(act_fun, str):
            act_fun = eval("nn." + act_fun + "()")
        self.tau = tau
        self.act_fun = act_fun
        self.spike_act = spike_act
        self.threshold_related = threshold_related

    def integral(self, inputs):
        self.mem = self.mem + (inputs - self.mem) / self.tau

    def calc_spike(self):
        if self.threshold_related:
            spike_tmp = self.act_fun(self.mem - self.threshold)
        else:
            spike_tmp = self.act_fun(self.mem)
        self.spike = self.spike_act(self.mem - self.threshold)
        self.mem = self.mem * (1 - self.spike)
        self.spike = spike_tmp

class SNN_RMSNorm(nn.Module):
    def __init__(self, max_length = 128, hidden_size=4096,node=LIAFNode, threshold=0.5, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.rms_neuron = node(act_fun='LeakyReLU', threshold=threshold)
        self.weight_neuron = node(act_fun='ReLU', threshold=threshold)
        self.weight = nn.Parameter(torch.ones(hidden_size,hidden_size))
        self.rms_connection = CustomLinear(torch.ones(1,hidden_size))
        self.weight_connection = CustomLinear(self.weight)

    def forward(self, x):
        x_sqr = x ** 2
        x_rms = x_sqr.mean(-1, keepdim=True)
        s_rms = self.rms_neuron(self.rms_connection(x_rms))
        rms_out = torch.rsqrt(s_rms + self.eps)
        s_scale = self.weight_neuron(self.weight_connection(rms_out))
        return s_scale