BrambleXu / knowledge-graph-learning

A curated list of awesome knowledge graph tutorials, projects and communities.
MIT License
744 stars 120 forks source link

Translating Embeddings for Modeling Multi-relational Data #5

Open BrambleXu opened 5 years ago

BrambleXu commented 5 years ago

总结

embedding entities and relationships of multi-relational data in low-dimensional vector spaces.

论文链接/代码

作者/机构

发表时间(yyyy/MM/dd)

概要

Multi-relational data 指的是directed graphs,其中地node与entities和edges相关。

应用场景

本文的工作是从KB(wordnet freebase)中建模,目的是自动添加new fact,即自动添加各种关系。

Modeling multi-relational data

对于single-relaitonal data,用一些描述性分析也能做很多预测,而relational data的难点在于locality(局部)可能会涉及多个关系,多个实体,而且种类会不一样。我们需要一个更普通的方法来考虑各种模式,对multi-relaional data进行建模,来同时捕捉所有的heterogeneous relationships(异质关系)。

Relationships as translations in the embedding space

relationships are represented as translations in the embedding space: (h, l, t)

这个模型的契机有两点。一是hierarchical relationship在了KB中很常见。比如对于一个tree结构的node进行表示,其emebdding应该接近于它的相邻node。第二点是word2vec模型的出现。

数据:Freebase containing 1M entities, 25k relationships and more than 17M training samples.

创新点

将三元组embedding

手法

image

image

Wordnet synsets 同义词集. We considered the data version used in [2], which wedenote WN in the following. Examples of triplets are (scoreNN1,hypernym,evaluationNN1)or (scoreNN2,haspart,musicalnotationNN1

WN is composed of senses, its entities are denoted by the concatenation of a word, its part-of-speech tagand a digit indicating which sense it refers to i.e.scoreNN1encodes the first meaning of the noun “score”

结果

relationship根据head和tail分为四种类:1-TO-1, 1-TO-MANY, MANY-TO-1, MANY-TO-MANY.

We obtained that FB15k has 26.2% of 1-TO-1relationships, 22.7% of 1-TO-MANY, 28.3% of MANY-TO-1, and 22.8% of MANY-TO-MANY.

image

image

评论

transE参数设置问题 #31 code

annie0808 commented 5 years ago

为什么embedding长度要为1