Series of fixes for backwards compatibility (AutoAWQ and other quantization libraries, imports from trainer_pt_utils) and functionality (LLaMA tokenizer conversion)
The Llama, Cohere and the Gemma model both no longer cache the triangular causal mask unless static cache is used. This was reverted by #29753, which fixes the BC issues w.r.t speed , and memory consumption, while still supporting compile and static cache. Small note, fx is not supported for both models, a patch will be brought very soon!
New model addition
Cohere open-source model
Command-R is a generative model optimized for long context tasks such as retrieval augmented generation (RAG) and using external APIs and tools. It is designed to work in concert with Cohere's industry-leading Embed and Rerank models to provide best-in-class integration for RAG applications and excel at enterprise use cases. As a model built for companies to implement at scale, Command-R boasts:
Strong accuracy on RAG and Tool Use
Low latency, and high throughput
Longer 128k context and lower pricing
Strong capabilities across 10 key languages
Model weights available on HuggingFace for research and evaluation
Llava next is the next version of Llava, which includes better support for non padded images, improved reasoning, OCR, and world knowledge. LLaVA-NeXT even exceeds Gemini Pro on several benchmarks.
Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:
Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution.
Better visual reasoning and OCR capability with an improved visual instruction tuning data mixture.
Better visual conversation for more scenarios, covering different applications.
Better world knowledge and logical reasoning.
Along with performance improvements, LLaVA-NeXT maintains the minimalist design and data efficiency of LLaVA-1.5. It re-uses the pretrained connector of LLaVA-1.5, and still uses less than 1M visual instruction tuning samples. The largest 34B variant finishes training in ~1 day with 32 A100s.*
You can trigger a rebase of this PR by commenting @dependabot rebase.
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
- `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Note
Automatic rebases have been disabled on this pull request as it has been open for over 30 days.
Bumps transformers from 4.36.1 to 4.39.3.
Release notes
Sourced from transformers's releases.
... (truncated)
Commits
09f9f56
add version 4.39.3ac6a350
[generate
] fix breaking change for patch (#29976)839c2a1
[BC
] Fix BC for AWQ quant (#29965)97c00cd
Release: v4.39.2e40fe39
[LlamaSlowConverter
] Slow to Fast better support (#29797)02b1012
[BC
] Fix BC for other libraries (#29934)1b6d501
Safe import of LRScheduler (#29919)cbe58b4
Release: v4.39.1056df1d
[SuperPoint
] Fix doc example (#29816)e49ebae
[cleanup
] vestiges of causal mask (#29806)You can trigger a rebase of this PR by commenting
@dependabot rebase
.Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show
Originally posted by @dependabot in https://github.com/Bryan-Roe/semantic-kernel/pull/52