Open Bryce1010 opened 4 years ago
AI Conference Deadlines [url]
2019ICCV [all papers] [github]
2019CVPR [all papers] [github]
2020CVPR [github]
这一部分是DeepLearning的代码模板,主要任务
- 收集deeplearning各方向的优秀代码
- PyTorch, TensorFlow, Keras等框架的训练技巧
- 优秀的知识点总结和review
[ ] Python练习册,每天一个小程序 [github]
[ ] python-cheatsheet [github]
[x] 自学Python——编程基础、科学计算及数据分析-中文python笔记 [github]
[ ] What the fuck python [github]
[ ] GitHub标星8100:Python中文资源,从新手到老司机,只要100天: [github]
[ ] Python 进阶-Real Python tutorials [url]
《Intermediate Python》的中译版本 [doc]
Python Data Science Handbook [book]
[ ] Python有趣的小例子 [url]
[ ] Pandas [url]
[ ] Data-Science–Cheat-Sheet [github]
分享8点超级有用的Python编程建议 [weixin]
[ ] 【个人项目】——Learning DataScience [github]
- 存储DataScience的代码模板;
- 存储DataScience的资料;
[ ] python 文件处理 [zhihu]
[ ] python magic method [url]
[ ] TensorFlow 2.0官方教程 [url]
Hands-on ML第二版[github]
[ ] Data-Science-Study-Paths-March-2019 [github]
GitHub:TensorFlow 最全资料集锦 [url
tensorflow 中文社区 [url]
tensorflow2.0 入门教程[zhihu]
mofan tensorflow [url]
Hands-on TensorFlow 2.0 from IJCAI19 [IJCAI]
[ ] Latex 笔记模板 [ref]
[x] Youtube: LaTex Tutorial [videos]
[x] How to read a paper [paper]
[ ] Writing Technical Articles [ref]
[ ] Research Skills [ref]
Academic Writing [中文笔记]
[x] On the Relationship between Self-Attention and Convolutional Layers [paper] [pytorch]
An overview of all the three metods CAM+Grad-CAM+Grad-CAM++[overview]
Grad-CAM [overview][gradcam++ pytorch][gradcam pytorch] [3D grad-cam (theano) ]
Grad-CAM++[pytorch]
[x] (2020 Data Augmentation) GridMask Data Augmentation
A curated list of awesome resources related to capsule networks[github]
Understanding Hinton’s Capsule Networks. Part I,II,III,IV[Medium]
Understanding Capsule Networks[Medium]
[ ] Loss Function && Machine Learning Metrics 总结 [blog]
Optimization Algorithms for Deep Learning[Medium]
An overview of gradient descent optimization algorithms[url]
On Optimization Methods for Deep Learning[ICML11]
[ ] An Overview of gradient descent optimization algorithms [Arxiv]
[x] (2015 ICLR) ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION [paper]
[ ] 机器学习中的评价指标
[ ] awesome image classification[url]
[ ] Classification 综述整理 [bryce1010]
[ ] 深入理解反向传播[url]
[ ] 如何调参[url]
[ ] (2019 ICML )EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks [paper]
[ ] (2019 ICCV )Searching for MobileNetV3 [paper]
[x] (2018 CVPR )Squeeze-and-Excitation Networks(SENet) [paper][code][review]
[ ] (2018 CVPR )Learning Transferable Architectures for Scalable Image Recognition(NASNet) [paper]
[x] (2017 CVPR )Aggregated Residual Transformations for Deep Neural Networks (ResNext) [paper]
(2020 ICLR )Deforming kernels to adapt towards object deformation [github]
pytorch-CIFAR10
torchvision datasets+densenet+dpn+efficientnet+googlenet+lenet+mobilenet+mobilenetv2
+pnasnet+preact_resnet+resnet+resnext+senet+shufflenet+shufflenetv2+vgg
Awesome Crowd Counting[github]
Crowd_counting_from_scratch[github]
multi-scale convolutional neural network (CNN) for crowd counting[Arxiv2017]
Counting Crowds and Lines with AI[url]
datasets[github]
knowledge distillation papers[github]
Distilling the Knowledge in a Neural Network[Medium]
[ ] (实践)Teacher-Student Architecture in Plant Disease Classification [medium]
SIGAI:生成式对抗网络模型综述[zhihu]
深入浅出:GAN原理与应用入门介绍[zhihu]
github:YadiraF-GAN[github]
Resources and Implementations of Generative Adversarial Nets: GAN, DCGAN, WGAN, CGAN, InfoGAN
github:hindupuravinash-the-gan-zoo[github] A list of all named GANs!
github: Zhangqianhui-AdversarialNetsPapers[github] The classical paper list with code about generative adversarial nets
GAN万字长文综述(中文·下载)[weixin]
Introduction to Turing Leanring and GANs (nice)[Medium]
How to measure GAN performance?[Medium]
Understanding Generative Adversarial Networks (GANs)[Medium]
PyTorch implementations of Generative Adversarial Networks.[github]
视频教程
(2020)A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications [paper]
VAE 教程
Intuitively Understanding Variational Autoencoders[Medium]
[ ] (CVPR2019 StyleGAN v1)A Style-Based Generator Architecture for Generative Adversarial Networks (StyleGAN) [paper]
[x] (arXiv2019 StyleGAN v2)Analyzing and Improving the Image Quality of StyleGAN [paper]
[ ] (ArXiv 2019 + overview) An Introduciton to Variational Autoencoders [paper]
[ ] [StarGAN v2] StarGAN v2: Diverse Image Synthesis for Multiple Domains [paper] [code]
(ICLR 2020)Overcoming the Disentanglement vs Reconstruction Trade-off via Jacobian Supervision [paper] [github]
(ICLR2020) RealnessGAN [github]
it enables the basic DCGAN architecture to generate realistic images at 10241024 resolution when trained from scratch
[ ] 目标检测综述 [blog]
[x] [ICLR 2020]Computation Reallocation for Object Detection [paper]
[ ] (2019 NIPS)DetNAS: Backbone Search for Object Detection [paper]
[ ] (2019 ICCV)CenterNet: Keypoint Triplets for Object Detection [paper]
[ ] (2019 ICCV) ThunderNet: Towards Real-time Generic Object Detection on Mobile Devices
[x] (2019 ICCV Attention) GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond [github]
Non-Local Network + SENet
[ ] (2019 CVPR)NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection [paper]
[ ] (2019 CVPR) HRNet: Deep High-Resolution Representation Learning for Human Pose Estimation [paper]
keypoint detection
[x] (CVPR 2019)Hybrid Task Cascade for Instance Segmentation [paper] [mmdetection]
[ ] (ECCV 2018) CornerNet: Detecting Objects as Paired Keypoints [paper]
[x] (CVPR2018) Cascade R-CNN: Delving Into High Quality Object Detection[paper]
[ ] (2018)YOLOv3: An Incremental Improvement [paper]
[ ] (ICCV 2017)Mask R-CNN [paper]
(ICCV 2017) soft-nms : Improving Object Detection With One Line of Code [paper] [论文笔记]
[ ] (ICCV 2017) Feature Pyramid Networks for Object Detection(FPN) [paper]
[ ] (ICCV 2017 Best Student Paper) Focal Loss for Dense Object Detection (RetinaNet) [paper]
[x] (ECCV 2016) SSD: Single Shot MultiBox Detector [paper]
(CVPR2016) OHEM : Training Region-based Object Detectors with Online Hard Example Mining [paper] [论文笔记]
[x] (NIPS 2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [paper] [pytorch]
[ ] Detectron项目[url]
[ ] 目标检测中不平衡样本综述 [github]
[ ] MMDetection [url]
RPN + Faster-RCNN + Mask-RCNN + Fast-RCNN + RetinaNet + Cascade R-CNN
+Cascade Mask-RCNN + Hybrid Task Cascade + SSD + Group Normalization +
Weight Standardization + Deformable Convolution v2 + Instaboost + Libra R-CNN +
Guided Anchoring + FCOS + FoveaBox + RepPoints + FreeAnchors + Grid R-CNN(plus)+
GHM + GCNet + Mask Scoring RCNN + Train from Scratch + NAS-FPN + ATSS +
[ ] Imbalance Problems in Object Detection [[github]]( Imbalance Problems in Object Detection)
[ ] TSM: Temporal Shift Module for Efficient Video Understanding [paper]
[ ] [ArXiv 2019] Depth-Aware Video Frame Interpolation [paper]
[ ] (Skill) PyTorch : Video Dataset (Pytorch载入视频数据的dataset.py) [repo]
[ ] (Skill) Getting started with Videos from OpenCV [url]
PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models [github]
DeepLearning Segmentation 总结 [博客]
github: awesome semantic segmentation[github]
Resources of semantic segmantation based on Deep Learning model[github]
2019语义分割综述[weixin]
[x] PointRend: Image Segmentation as Rendering [paper][review]
把语义分割问题以及实例分割问题当做一个图像渲染问题来解决。本质是一个新型的上采样方法,针对物体边缘的分割进行优化,使得其在难以分割的物体边缘部分有更好的表现。
[ ] PyTorch for Semantic Segmentation [github]
Survey on Automated Machine Learning:[paper]
Auto Machine Learning 学习笔记[weixin]
AutoML: A Sruvey of the State-of-the-Art[paper]
Attention[paper]
Everything you need to know about AutoML and Neural Architecture Search[Medium]
LITERATURE ON NEURAL ARCHITECTURE SEARCH[url]
Awesome NAS[github]
Awesome ML Model Compression[github]
awesome-AutoML-and-Lightweight-Models[github]
[ArXiv 2019] Network Pruning via Transformable Architecture Search [paper]
[ ] Learning to Learn [berkeley bari]
[ ] Stanford Deep Multi-Task and Meta Learning[weixin]
Awesome few-shot from Duan[url]
Awesome few-shot from bryce1010[url]
[ ] Few-shot Classification 综述 [bryce1010]
[ ] Few-shot Learning detection综述 [bryce1010]
(ArXiv 2020)Continual Local Replacement for Few-shot Image Recognition [paper] [github]
李纪为-出入NLP领域的一些小建议[zhihu]
斯坦福2019深度学习NLP课程 视频+PPT+参考资料+优秀项目 [zhihu]
Overview of Modern Deep Learning Techniques Applied to Natural Language Processing[github]
深度学习之自然语言处理斯坦福大学CS224n课程集训营[github]
邱锡鹏: 五个练习上手深度学习 [Medium]
CS224n 斯坦福深度自然语言处理课 [2019版课程主页] [B站英文字幕版]
[ ] CS224n 2019一周通关攻略 [zhihu]
[ ] 自然语言NLP基本概念大全 [blog]
[ ] NLP 中文综述整理[blog]
[ ] NLP Paper Summary [github]
[ ] [XLNet] XLNet: Generalized Autoregressive Pretraining for Language Understanding [paper] [code]
[x] Understanding BERT [medium]
Pytorch Transformers [github]
BERT, GPT, GPT-2, Transformer-XL, XLNet, et.
Transformers: State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch [github]
[ ] Papers & presentations from Hugging Face's weekly science day [github]
[ ] an Open Course Platform for Stanford CS224n (2020 Winter) [github]
[ ] Google QUEST Q&A Labeling 1st place solution with code [kaggle]
个人主页,个人学习生涯!
学习流程:
一点一点搬运到博客上
ref
Deep learning papers reading roadmap
Data science roadmap
youtube-channels-for-deep-learning-and-computer-vision
AI-CheetSheet
DeelLearningTutorial AI完备路线
AI学习路线 from 机器之心
Foreword:
5. 深度学习
博客
Videos & Images Theory and Analytics Laboratory (VITAL) of Sherbrooke University[laboratory] [blog]
非常好的公共资源,有他们组的weekly-reading group& weekly machine learning videos.
Lil’Log [blog]
Berkeley Artificial Intelligence Research [Bair]
Jay Alammar(NLP 大佬) [blog]
Createmomo [blog]
包含许多深度学习的基础
Jonathan Hui blog [blog]
关于深度学习,很久不更新了
daiwk’s blog [blog]
覆盖深度学习各方面
AI Learn Notes [github]
telesens.co[blog]
研究资源列表 A curated list of research resources [github]
Yoshua Bengio [blog]