Closed JulieChoo closed 1 year ago
I have encountered the same problem, When removing the try/except block it returns the following error:
RuntimeError: Error(s) in loading state_dict for DataParallel: Missing key(s) in state_dict: "module.getmask.getmask.0.weight", "module.getmask.getmask.0.bias", "module.getmask.getmask.2.weight", "module.getmask.getmask.2.bias". Unexpected key(s) in state_dict: "module.FPN_LOC.smooth_s4.0.weight", "module.FPN_LOC.smooth_s4.0.bias", "module.FPN_LOC.smooth_s4.1.weight", "module.FPN_LOC.smooth_s4.1.bias", "module.FPN_LOC.smooth_s3.0.weight", "module.FPN_LOC.smooth_s3.0.bias", "module.FPN_LOC.smooth_s3.1.weight", "module.FPN_LOC.smooth_s3.1.bias", "module.FPN_LOC.smooth_s2.0.weight", "module.FPN_LOC.smooth_s2.0.bias", "module.FPN_LOC.smooth_s2.1.weight", "module.FPN_LOC.smooth_s2.1.bias", "module.FPN_LOC.smooth_s1.0.weight", "module.FPN_LOC.smooth_s1.0.bias", "module.FPN_LOC.smooth_s1.1.weight", "module.FPN_LOC.smooth_s1.1.bias", "module.FPN_LOC.fpn1.0.weight", "module.FPN_LOC.fpn1.1.weight", "module.FPN_LOC.fpn1.1.bias", "module.FPN_LOC.fpn1.1.running_mean", "module.FPN_LOC.fpn1.1.running_var", "module.FPN_LOC.fpn1.1.num_batches_tracked", "module.FPN_LOC.fpn2.0.weight", "module.FPN_LOC.fpn2.1.weight", "module.FPN_LOC.fpn2.1.bias", "module.FPN_LOC.fpn2.1.running_mean", "module.FPN_LOC.fpn2.1.running_var", "module.FPN_LOC.fpn2.1.num_batches_tracked", "module.FPN_LOC.fpn3.0.weight", "module.FPN_LOC.fpn3.1.weight", "module.FPN_LOC.fpn3.1.bias", "module.FPN_LOC.fpn3.1.running_mean", "module.FPN_LOC.fpn3.1.running_var", "module.FPN_LOC.fpn3.1.num_batches_tracked", "module.FPN_LOC.fpn4.0.weight", "module.FPN_LOC.fpn4.1.weight", "module.FPN_LOC.fpn4.1.bias", "module.FPN_LOC.fpn4.1.running_mean", "module.FPN_LOC.fpn4.1.running_var", "module.FPN_LOC.fpn4.1.num_batches_tracked", "module.getmask.conv_1.weight", "module.getmask.conv_1.bias", "module.getmask.conv_2.weight", "module.getmask.conv_2.bias". size mismatch for module.getmask.g.weight: copying a param with shape torch.Size([1024, 1024, 1, 1]) from checkpoint, the shape in current model is torch.Size([288, 288, 1, 1]). size mismatch for module.getmask.g.bias: copying a param with shape torch.Size([1024]) from checkpoint, the shape in current model is torch.Size([288]). size mismatch for module.getmask.theta.weight: copying a param with shape torch.Size([1024, 1024, 1, 1]) from checkpoint, the shape in current model is torch.Size([288, 288, 1, 1]). size mismatch for module.getmask.theta.bias: copying a param with shape torch.Size([1024]) from checkpoint, the shape in current model is torch.Size([288]). size mismatch for module.getmask.phi.weight: copying a param with shape torch.Size([1024, 1024, 1, 1]) from checkpoint, the shape in current model is torch.Size([288, 288, 1, 1]). size mismatch for module.getmask.phi.bias: copying a param with shape torch.Size([1024]) from checkpoint, the shape in current model is torch.Size([288]). size mismatch for module.getmask.W_s.weight: copying a param with shape torch.Size([64, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([18, 18, 1, 1]). size mismatch for module.getmask.W_s.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([18]). size mismatch for module.branch_cls_level_1.branch_cls.0.weight: copying a param with shape torch.Size([32, 317, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 271, 3, 3]).
@JulieChoo @pabberpe the localization_only file is HiFi_Net_loc.py, which calls models/NLCDetection_loc.py, and the corresponding weights can be found here the localization and detection file is HiFi_Net.py, which calls models/NLCDetection_api.py. The corresponding weights are sitting here Let me know if this can solve your concerns.
Hello author, thank you for your reply. I followed the steps here and used the corresponding weights to get the visualization. But when I use Casiav1's forged images for visualization, the effect I get is not good. May I ask where I went wrong?
@JulieChoo @pabberpe If you are only doing localization on dataset such as CASIA, please follow this loc. if you want to produce result on HiFi-IFDL dataset, please go to det_and_loc, which uses different data preprocessing steps.
@JulieChoo @pabberpe the localization_only file is HiFi_Net_loc.py, which calls models/NLCDetection_loc.py, and the corresponding weights can be found here the localization and detection file is HiFi_Net.py, which calls models/NLCDetection_api.py. The corresponding weights are sitting here Let me know if this can solve your concerns.
This solved my issue. I hadn't seen there were two different download links. Thank you!
@JulieChoo @pabberpe If you are only doing localization on dataset such as CASIA, please follow this loc. if you want to produce result on HiFi-IFDL dataset, please go to det_and_loc, which uses different data preprocessing steps.
Hello author, thank you for your efforts and reply. I solved the problem and can visualize the results on the CASIA dataset.
@JulieChoo In fact, you can find both numerical results csv file and visualization in the same section.
Hello, this problem occurred when using the latest weights you provided. Can you help me?
weights/HRNet weight-loading succeeds: weights/HRNet/225000.pth weights/HRNet_params: 6361208 weights/NLCDetection weight-loading fails weights/NLCDetection_params: 528923