Closed palmoreck closed 4 years ago
For "Model fit & predict & register in geonode using Kale" task will use:
Docu of Dockerfile in: kube_sipecam/dockerfiles/geonode_conabio
And add rule in security groups for 30002
port.
Create in /shared_volume/.geonode_conabio
:
cat .geonode_conabio
HOST_NAME="<ipv4 DNS of ec2>"
USER_GEOSERVER="super"
PASSWORD_GEOSERVER="duper"
PASSWORD_DB_GEONODE_DATA="geonode"
Next just for reference:
import_raster --base_directory /shared_volume/land_cover_results/ --input_filename raster_landsat8_chiapas_madmex_31_clases_pixel_wise_54_-38.tif --region "Chiapas, Mexico, North America, Latin America" --name "Chiapas_lc_2017_landsat8_test" --title "Land cover Chiapas landsat8 2017 test" --abstract "Test" --key_words "Chiapas"
Use sld from:
https://github.com/CONABIO/geonode/blob/master/styles/madmex_31_classes.sld
Disk full:
HTTP response headers: HTTPHeaderDict({'Date': 'Tue, 01 Sep 2020 18:12:22 GMT', 'Content-Length': '487', 'Content-Type': 'text/plain; charset=utf-8'})
HTTP response body: {"error_message":"Error creating pipeline: Create pipeline failed: InternalServerError: Failed to store b2fa5a70-cab4-4c89-8784-9c0cb118d1b4: Storage backend has reached its minimum free disk threshold. Please delete a few objects to proceed.","error_details":"Error creating pipeline: Create pipeline failed: InternalServerError: Failed to store b2fa5a70-cab4-4c89-8784-9c0cb118d1b4: Storage backend has reached its minimum free disk threshold. Please delete a few objects to proceed."}
Delete kubeflow (MAD-Mex and geonode deployments)
To free space:
minikube stop
minikube delete
Check:
docker system df
docker system prune --all --volumes
rm -r /root/.minikube/*
rm -r /root/.kube/*
rm -r /opt/kf-test
Start again (being in root dir)
CONFIG_URI="https://raw.githubusercontent.com/kubeflow/manifests/v1.0-branch/kfdef/kfctl_k8s_istio.v1.0.2.yaml"
source ~/.profile
chmod gou+wrx -R /opt/
mkdir -p ${KF_DIR}
#minikube start
cd /root && minikube start --driver=none
#kubeflow start
cd ${KF_DIR} && kfctl apply -V -f ${CONFIG_URI}
If there's problems use:
wget https://raw.githubusercontent.com/kubeflow/manifests/v1.0-branch/kfdef/kfctl_k8s_istio.v1.0.2.yaml
wget https://codeload.github.com/kubeflow/manifests/tar.gz/v1.0.2 -O v1.0.2.tar.gz
#change kfctl_k8s_istio.v1.0.2.yaml at the end uri:
repos:
- name: manifests
uri: https://github.com/kubeflow/manifests/archive/v1.0.2.tar.gz
#for:
repos:
- name: manifests
uri: file:///opt/kf-test/v1.0.2.tar.gz
ref: https://github.com/aws-samples/eks-workshop/issues/639
If there's problems with geonode (because stack of docker-compose was deleted, clone again repo and deploy geonode)
In a first step will follow: 1_issue_5_pipeline_lc_MAD-Mex_pixel_wise.ipynb
[x] Model fit using Kale
[x] Model fit & predict using Kale
[x] Model fit & predict & register in geonode using Kale
using results processed in https://github.com/CONABIO/kube_sipecam_playground/projects/2
In a second step will examinate what will be incorporated in the kubeflow pipeline that its described in 1_issue_5_basic_setup_in_AWS_for_MAD_Mex_classif_pipeline.ipynb
From ingestion step?
From recipes computation step?
This 2nd step will be another issue and will be linked to milestone 4