Open Mswang12398464635 opened 11 months ago
我CT到MR方向CL阶段复现结果才83.47%,还没有你的高呢,不知道怎么回事。我PFA阶段也才84.08%,你是有修改什么吗?
---原始邮件--- 发件人: @.> 发送时间: 2023年12月18日(周一) 晚上9:01 收件人: @.>; 抄送: @.**@.>; 主题: Re: [CSCYQJ/MICCAI23-ProtoContra-SFDA] CL阶段性能下降 (Issue #10)
我也有这个疑问,我CT到MR方向CL阶段复现结果为84.26%,MR到CT的为71.07%,和论文结果还有一些差距。还需要注意其他什么因素的影响吗?
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
@Mswang12398464635 我CT到MR方向,源95.35%,PFA阶段是83.89%,CL是84.26%,也没动什么,和作者应该是差不多一样的设置,除了batchsize小一些。
batchsize具体是多少呀,你把每个阶段的batchsize都改了吗?这个复现还挺困难,我看评论里大家好像都这样,不能复现到预期结果。有点害怕😨
---原始邮件--- 发件人: @.> 发送时间: 2023年12月20日(周三) 上午10:54 收件人: @.>; 抄送: @.**@.>; 主题: Re: [CSCYQJ/MICCAI23-ProtoContra-SFDA] CL阶段性能下降 (Issue #10)
@Mswang12398464635 我CT到MR方向,源95.35%,PFA阶段是83.89%,CL是84.26%,也没动什么,和作者应该是差不多一样的设置,除了batchsize小一些。
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you were mentioned.Message ID: @.***>
7 5 5,我显卡跑不了太大的batchsize
@Mswang12398464635 你有尝试另外一个方向的表现吗?
我还没尝试,因为我一开始以为两个方向肯定是大同小异,我把这个方向整好,另一个应该也差不多。但看到你的结果,我觉得得换一下了,我准备把batchsize改了之后看看结果,然后换另一个方向。
---原始邮件--- 发件人: @.> 发送时间: 2023年12月20日(周三) 中午11:28 收件人: @.>; 抄送: @.**@.>; 主题: Re: [CSCYQJ/MICCAI23-ProtoContra-SFDA] CL阶段性能下降 (Issue #10)
@Mswang12398464635 你有尝试另外一个方向的表现吗?
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you were mentioned.Message ID: @.***>
@zqp1226358 我想请问一下,你有尝试另一个方向吗, 在MRtoCT,我在PFA阶段只有0.76,结果很低是正常的吗 但是在CTtoMR方向PFA结果有0.83左右
Hi @qwerasdzxcvb , I am also trying to reproduce the results in the paper, so far on my side the runs are very unstable - never quite reaching the paper's results, at best about 3-4% down.
Do you want to share your preprocessing code? perhaps we could try debugging it together. I also tried using the data preproceseed in SIFA:
https://github.com/cchen-cc/SIFA?tab=readme-ov-file
But results remain unstable.
@BarY7 我用的作者分享的preprocess代码,在作者提交的历史记录里边
@qwerasdzxcvb I now also used the preprocessing notebook CT to MR direction: After PFA, the model is at 86% . But, the model had high no adaptation score to start with - 75%.
MR to CT: Results are much worse, no adaptation score is very low - about 36-40%. PFA sometimes brings the results to 70 area, sometimes doesn't change the results much.
论文方向很有意义。但在代码运行时,CT域的预训练阶段和MRI域的PFA阶段效果都不错,可是CL阶段却只有0.84不到。如果直接将预训练模型用于CL阶段,甚至达不到0.5。可以请教一下这是怎么回事嘛,非常感谢!