Open tiru1930 opened 4 years ago
Even i am facing the same issue. The detection results are good but the track ids keep changing frequently. @CaptainEven what are the parameters that can be tuned? Num of classes in the dataset = 5
['train.py', '--task', 'mot', '--exp_id', 'new_bboxes_3e-5', '--gpus', '1', '--batch_size', '16', '--num_epochs', '60', '--lr', '3e-5', '--lr_step', '20,40,50', '--data_cfg', '../src/lib/cfg/cater_new_bboxes.json', '--load_model', '/data/Abhay/FairMOT/models/dla34-ba72cf86.pth', '--input_h', '608', '--input_w', '1088', '--print_iter', '1', '--arch', 'dla_34'] ==> Opt: K: 200 arch: dla_34 batch_size: 16 cat_spec_wh: False chunk_sizes: [16] conf_thres: 0.4 data_cfg: ../src/lib/cfg/cater_new_bboxes.json data_dir: /mnt/diskb/even/dataset dataset: jde debug_dir: /data/Abhay/FairMOT/exp/mot/new_bboxes_3e-5/debug dense_wh: False det_thres: 0.3 down_ratio: 4 exp_dir: /data/Abhay/FairMOT/exp/mot exp_id: new_bboxes_3e-5 fix_res: True gen_scale: True gpus: [1] gpus_str: 1 head_conv: 256 heads: {'hm': 5, 'wh': 2, 'id': 128, 'reg': 2} hide_data_time: False hm_weight: 1 id_loss: ce id_weight: 1 input_h: 608 input_img: /users/duanyou/c5/all_pretrain/test.txt input_mode: video input_res: 1088 input_video: ../videos/uav_339.mp4 input_w: 1088 input_wh: (1088, 608) is_debug: False keep_res: False load_model: /data/Abhay/FairMOT/models/dla34-ba72cf86.pth lr: 3e-05 lr_step: [20, 40, 50] master_batch_size: 16 mean: None metric: loss min_box_area: 100 mse_loss: False multi_scale: True nID_dict: defaultdict(<class 'int'>, {4: 6, 1: 1, 2: 4, 3: 4, 0: 3}) nms_thres: 0.4 norm_wh: False not_cuda_benchmark: False not_prefetch_test: False not_reg_offset: False num_classes: 5 num_epochs: 60 num_iters: -1 num_stacks: 1 num_workers: 4 off_weight: 1 output_format: video output_h: 152 output_res: 272 output_root: ../results output_w: 272 pad: 31 print_iter: 1 reg_loss: l1 reg_offset: True reid_cls_ids: 0,1,2,3,4 reid_dim: 128 resume: False root_dir: /data/Abhay/FairMOT save_all: False save_dir: /data/Abhay/FairMOT/exp/mot/new_bboxes_3e-5 seed: 317 std: None task: mot test: False test_mot15: False test_mot16: False test_mot17: False test_mot20: False track_buffer: 30 trainval: False val_intervals: 10 val_mot15: False val_mot16: False val_mot17: False val_mot20: False vis_thresh: 0.5 wh_weight: 0.1
As the objects in my videos start and stop moving suddenly, that too at a high speed. So can the Kalman filtering be a reason for frequent ID switches?
If yes, then is there a way to stop using Kalman filters during inferencing?
ThankYou
track ids are keep changing over the certain number of frames for same object. These number of frames are not consistent. what could be the reason.