Closed mcquin closed 7 years ago
__________________________________________________________________________________________________________________ TestLineIntegration.test_01_02_two_lines __________________________________________________________________________________________________________________ self = <test_filter.TestLineIntegration testMethod=test_01_02_two_lines> def test_01_02_two_lines(self): img = np.ones((20,30)) * .5 img[8,10:20] = 1 img[12,10:20] = 0 > result = F.line_integration(img, 0, 1, 0) tests/test_filter.py:1770: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ centrosome/filter.py:1189: in line_integration smoothed = scind.gaussian_filter1d(rotated, sigma) /usr/local/lib/python2.7/site-packages/scipy/ndimage/filters.py:271: in gaussian_filter1d weights = _gaussian_kernel1d(sigma, order, lw)[::-1] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ sigma = 0, order = 0, radius = 0 def _gaussian_kernel1d(sigma, order, radius): """ Computes a 1D Gaussian convolution kernel. """ if order < 0: raise ValueError('order must be non-negative') > p = numpy.polynomial.Polynomial([0, 0, -0.5 / (sigma * sigma)]) E ZeroDivisionError: float division by zero /usr/local/lib/python2.7/site-packages/scipy/ndimage/filters.py:207: ZeroDivisionError _______________________________________________________________________________________________________________ TestLineIntegration.test_01_03_diagonal_lines ________________________________________________________________________________________________________________ self = <test_filter.TestLineIntegration testMethod=test_01_03_diagonal_lines> def test_01_03_diagonal_lines(self): img = np.ones((20,30)) * .5 i,j = np.mgrid[0:20,0:30] img[(i == j-3) & (i <= 15)] = 1 img[(i == j + 3)] = 0 expected = np.zeros((20,30), bool) expected[(i >= j-3) & (i <= j+3)] = True > result = F.line_integration(img, -45, 1, 0) tests/test_filter.py:1784: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ centrosome/filter.py:1189: in line_integration smoothed = scind.gaussian_filter1d(rotated, sigma) /usr/local/lib/python2.7/site-packages/scipy/ndimage/filters.py:271: in gaussian_filter1d weights = _gaussian_kernel1d(sigma, order, lw)[::-1] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ sigma = 0, order = 0, radius = 0 def _gaussian_kernel1d(sigma, order, radius): """ Computes a 1D Gaussian convolution kernel. """ if order < 0: raise ValueError('order must be non-negative') > p = numpy.polynomial.Polynomial([0, 0, -0.5 / (sigma * sigma)]) E ZeroDivisionError: float division by zero /usr/local/lib/python2.7/site-packages/scipy/ndimage/filters.py:207: ZeroDivisionError ____________________________________________________________________________________________________________________ TestLineIntegration.test_01_04_decay ____________________________________________________________________________________________________________________ self = <test_filter.TestLineIntegration testMethod=test_01_04_decay> def test_01_04_decay(self): img = np.ones((25,23)) * .5 img[10,10] = 1 img[20,10] = 0 > result = F.line_integration(img, 0, .9, 0) tests/test_filter.py:1792: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ centrosome/filter.py:1189: in line_integration smoothed = scind.gaussian_filter1d(rotated, sigma) /usr/local/lib/python2.7/site-packages/scipy/ndimage/filters.py:271: in gaussian_filter1d weights = _gaussian_kernel1d(sigma, order, lw)[::-1] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ sigma = 0, order = 0, radius = 0 def _gaussian_kernel1d(sigma, order, radius): """ Computes a 1D Gaussian convolution kernel. """ if order < 0: raise ValueError('order must be non-negative') > p = numpy.polynomial.Polynomial([0, 0, -0.5 / (sigma * sigma)]) E ZeroDivisionError: float division by zero /usr/local/lib/python2.7/site-packages/scipy/ndimage/filters.py:207: ZeroDivisionError
SciPy version:
$ pip freeze | grep scipy scipy==1.0.0
SciPy version: