Tue Mar 5 19:47:57 2024 Character level attributes embedding...
Tue Mar 5 19:48:04 2024 Word level attributes embedding...
Traceback (most recent call last):
File "D:\File\PyCharm Files\MAUIL-main\code\embed.py", line 375, in
embed_wd()
File "D:\File\PyCharm Files\MAUIL-main\code\embed.py", line 341, in embed_wd
ex_corpus=True, ex_corpus_fname=ex_corpus_fname, ex_corpus_xml=ex_corpus_xml)
File "D:\File\PyCharm Files\MAUIL-main\code\embed.py", line 306, in word_embed_cn
return word_embed(docs, excorpus=iter, lamb=lamb, dim=dim, ave_neighbors=ave_neighbors, g1=g1, g2=g2)
File "D:\File\PyCharm Files\MAUIL-main\code\embed.py", line 113, in word_embed
model = Word2Vec(sentences=ex_corpus, size=dim, workers=os.cpu_count() - 1)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\word2vec.py", line 783, in init
Tue Mar 5 19:48:05 2024 Learning word vectors...
fast_version=FAST_VERSION)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\base_any2vec.py", line 763, in init
end_alpha=self.min_alpha, compute_loss=compute_loss)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\word2vec.py", line 910, in train
queue_factor=queue_factor, report_delay=report_delay, compute_loss=compute_loss, callbacks=callbacks)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\base_any2vec.py", line 1081, in train
kwargs)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\base_any2vec.py", line 536, in train
total_words=total_words, kwargs)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\base_any2vec.py", line 1187, in _check_training_sanity
raise RuntimeError("you must first build vocabulary before training the model")
RuntimeError: you must first build vocabulary before training the model
Tue Mar 5 19:47:57 2024 Character level attributes embedding... Tue Mar 5 19:48:04 2024 Word level attributes embedding... Traceback (most recent call last): File "D:\File\PyCharm Files\MAUIL-main\code\embed.py", line 375, in
embed_wd()
File "D:\File\PyCharm Files\MAUIL-main\code\embed.py", line 341, in embed_wd
ex_corpus=True, ex_corpus_fname=ex_corpus_fname, ex_corpus_xml=ex_corpus_xml)
File "D:\File\PyCharm Files\MAUIL-main\code\embed.py", line 306, in word_embed_cn
return word_embed(docs, excorpus=iter, lamb=lamb, dim=dim, ave_neighbors=ave_neighbors, g1=g1, g2=g2)
File "D:\File\PyCharm Files\MAUIL-main\code\embed.py", line 113, in word_embed
model = Word2Vec(sentences=ex_corpus, size=dim, workers=os.cpu_count() - 1)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\word2vec.py", line 783, in init
Tue Mar 5 19:48:05 2024 Learning word vectors...
fast_version=FAST_VERSION)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\base_any2vec.py", line 763, in init
end_alpha=self.min_alpha, compute_loss=compute_loss)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\word2vec.py", line 910, in train
queue_factor=queue_factor, report_delay=report_delay, compute_loss=compute_loss, callbacks=callbacks)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\base_any2vec.py", line 1081, in train
kwargs)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\base_any2vec.py", line 536, in train
total_words=total_words, kwargs)
File "D:\Software\miniconda3\envs\MAUIL\lib\site-packages\gensim\models\base_any2vec.py", line 1187, in _check_training_sanity
raise RuntimeError("you must first build vocabulary before training the model")
RuntimeError: you must first build vocabulary before training the model