ChimeraOS / chimeraos

A Steam Big Picture based couch gaming OS
MIT License
1.59k stars 115 forks source link

Audio is broken after running some games for 5-10 mins on onexplayer mini pro (6800u) #511

Open darkcl opened 1 year ago

darkcl commented 1 year ago

Fresh install chimeraos on my onexplayer mini pro, try running the following games / application and the audio will be broken (loud hiss sound) after running for 5-10 mins:

The audio is back to normal if i switch to desktop mode

output of aplay -l

[gamer@chimeraos ~]$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Generic [HD-Audio Generic], device 3: HDMI 0 [HDMI 0]
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 0: Generic [HD-Audio Generic], device 7: HDMI 1 [HDMI 1]
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 1: Generic_1 [HD-Audio Generic], device 0: ALC269VB Analog [ALC269VB Analog]
  Subdevices: 0/1
  Subdevice #0: subdevice #0
ruineka commented 1 year ago

Interesting, the AOKZOE had the same if not similar issue that can be resolved by changing the audio bitrate. I wonder if the fix would be the same. I'll look into this.

darkcl commented 1 year ago

Interesting, the AOKZOE had the same if not similar issue that can be resolved by changing the audio bitrate. I wonder if the fix would be the same. I'll look into this.

Trying to change the bitrate with this config in ~/.config/pipewire/pipewire.conf, don't know if it will fix the issue :thinking: (currently playing for ~20mins without hissing)

# Daemon config file for PipeWire version "0.3.65" #
#
# Copy and edit this file in /etc/pipewire for system-wide changes
# or in ~/.config/pipewire for local changes.
#
# It is also possible to place a file with an updated section in
# /etc/pipewire/pipewire.conf.d/ for system-wide changes or in
# ~/.config/pipewire/pipewire.conf.d/ for local changes.
#

context.properties = {
    ## Configure properties in the system.
    #library.name.system                   = support/libspa-support
    #context.data-loop.library.name.system = support/libspa-support
    #support.dbus                          = true
    #link.max-buffers                      = 64
    link.max-buffers                       = 16                       # version < 3 clients can't handle more
    #mem.warn-mlock                        = false
    #mem.allow-mlock                       = true
    #mem.mlock-all                         = false
    #clock.power-of-two-quantum            = true
    #log.level                             = 2
    #cpu.zero.denormals                    = false

    core.daemon = true              # listening for socket connections
    core.name   = pipewire-0        # core name and socket name

    ## Properties for the DSP configuration.
    default.clock.rate          = 96000                            # CHANGED
    default.clock.allowed-rates = [ 44100, 48000, 88200, 96000 ] # CHANGED
    #default.clock.quantum       = 1024
    default.clock.min-quantum   = 16
    #default.clock.max-quantum   = 2048
    #default.clock.quantum-limit = 8192
    #default.video.width         = 640
    #default.video.height        = 480
    #default.video.rate.num      = 25
    #default.video.rate.denom    = 1
    #
    #settings.check-quantum      = false
    #settings.check-rate         = false
    #
    # These overrides are only applied when running in a vm.
    vm.overrides = {
        default.clock.min-quantum = 1024
    }
}

context.spa-libs = {
    #<factory-name regex> = <library-name>
    #
    # Used to find spa factory names. It maps an spa factory name
    # regular expression to a library name that should contain
    # that factory.
    #
    audio.convert.* = audioconvert/libspa-audioconvert
    avb.*           = avb/libspa-avb
    api.alsa.*      = alsa/libspa-alsa
    api.v4l2.*      = v4l2/libspa-v4l2
    api.libcamera.* = libcamera/libspa-libcamera
    api.bluez5.*    = bluez5/libspa-bluez5
    api.vulkan.*    = vulkan/libspa-vulkan
    api.jack.*      = jack/libspa-jack
    support.*       = support/libspa-support
    #videotestsrc   = videotestsrc/libspa-videotestsrc
    #audiotestsrc   = audiotestsrc/libspa-audiotestsrc
}

context.modules = [
    #{ name = <module-name>
    #    [ args  = { <key> = <value> ... } ]
    #    [ flags = [ [ ifexists ] [ nofail ] ]
    #}
    #
    # Loads a module with the given parameters.
    # If ifexists is given, the module is ignored when it is not found.
    # If nofail is given, module initialization failures are ignored.
    #

    # Uses realtime scheduling to boost the audio thread priorities. This uses
    # RTKit if the user doesn't have permission to use regular realtime
    # scheduling.
    { name = libpipewire-module-rt
        args = {
            nice.level    = -11
            #rt.prio      = 88
            #rt.time.soft = -1
            #rt.time.hard = -1
        }
        flags = [ ifexists nofail ]
    }

    # The native communication protocol.
    { name = libpipewire-module-protocol-native }

    # The profile module. Allows application to access profiler
    # and performance data. It provides an interface that is used
    # by pw-top and pw-profiler.
    { name = libpipewire-module-profiler }

    # Allows applications to create metadata objects. It creates
    # a factory for Metadata objects.
    { name = libpipewire-module-metadata }

    # Creates a factory for making devices that run in the
    # context of the PipeWire server.
    { name = libpipewire-module-spa-device-factory }

    # Creates a factory for making nodes that run in the
    # context of the PipeWire server.
    { name = libpipewire-module-spa-node-factory }

    # Allows creating nodes that run in the context of the
    # client. Is used by all clients that want to provide
    # data to PipeWire.
    { name = libpipewire-module-client-node }

    # Allows creating devices that run in the context of the
    # client. Is used by the session manager.
    { name = libpipewire-module-client-device }

    # The portal module monitors the PID of the portal process
    # and tags connections with the same PID as portal
    # connections.
    { name = libpipewire-module-portal
        flags = [ ifexists nofail ]
    }

    # The access module can perform access checks and block
    # new clients.
    { name = libpipewire-module-access
        args = {
            # access.allowed to list an array of paths of allowed
            # apps.
            #access.allowed = [
            #    /usr/bin/pipewire-media-session
            #]

            # An array of rejected paths.
            #access.rejected = [ ]

            # An array of paths with restricted access.
            #access.restricted = [ ]

            # Anything not in the above lists gets assigned the
            # access.force permission.
            #access.force = flatpak
        }
    }

    # Makes a factory for wrapping nodes in an adapter with a
    # converter and resampler.
    { name = libpipewire-module-adapter }

    # Makes a factory for creating links between ports.
    { name = libpipewire-module-link-factory }

    # Provides factories to make session manager objects.
    { name = libpipewire-module-session-manager }

    # Use libcanberra to play X11 Bell
    { name = libpipewire-module-x11-bell
        args = {
            #sink.name = ""
            #sample.name = "bell-window-system"
            #x11.display = null
            #x11.xauthority = null
        }
        flags = [ ifexists nofail ]
    }
]

context.objects = [
    #{ factory = <factory-name>
    #    [ args  = { <key> = <value> ... } ]
    #    [ flags = [ [ nofail ] ]
    #}
    #
    # Creates an object from a PipeWire factory with the given parameters.
    # If nofail is given, errors are ignored (and no object is created).
    #
    #{ factory = spa-node-factory   args = { factory.name = videotestsrc node.name = videotestsrc Spa:Pod:Object:Param:Props:patternType = 1 } }
    #{ factory = spa-device-factory args = { factory.name = api.jack.device foo=bar } flags = [ nofail ] }
    #{ factory = spa-device-factory args = { factory.name = api.alsa.enum.udev } }
    #{ factory = spa-node-factory   args = { factory.name = api.alsa.seq.bridge node.name = Internal-MIDI-Bridge } }
    #{ factory = adapter            args = { factory.name = audiotestsrc node.name = my-test } }
    #{ factory = spa-node-factory   args = { factory.name = api.vulkan.compute.source node.name = my-compute-source } }

    # A default dummy driver. This handles nodes marked with the "node.always-driver"
    # property when no other driver is currently active. JACK clients need this.
    { factory = spa-node-factory
        args = {
            factory.name    = support.node.driver
            node.name       = Dummy-Driver
            node.group      = pipewire.dummy
            priority.driver = 20000
        }
    }
    { factory = spa-node-factory
        args = {
            factory.name    = support.node.driver
            node.name       = Freewheel-Driver
            priority.driver = 19000
            node.group      = pipewire.freewheel
            node.freewheel  = true
        }
    }
    # This creates a new Source node. It will have input ports
    # that you can link, to provide audio for this source.
    #{ factory = adapter
    #    args = {
    #        factory.name     = support.null-audio-sink
    #        node.name        = "my-mic"
    #        node.description = "Microphone"
    #        media.class      = "Audio/Source/Virtual"
    #        audio.position   = "FL,FR"
    #    }
    #}

    # This creates a single PCM source device for the given
    # alsa device path hw:0. You can change source to sink
    # to make a sink in the same way.
    #{ factory = adapter
    #    args = {
    #        factory.name           = api.alsa.pcm.source
    #        node.name              = "alsa-source"
    #        node.description       = "PCM Source"
    #        media.class            = "Audio/Source"
    #        api.alsa.path          = "hw:0"
    #        api.alsa.period-size   = 1024
    #        api.alsa.headroom      = 0
    #        api.alsa.disable-mmap  = false
    #        api.alsa.disable-batch = false
    #        audio.format           = "S16LE"
    #        audio.rate             = 48000
    #        audio.channels         = 2
    #        audio.position         = "FL,FR"
    #    }
    #}
]

context.exec = [
    #{ path = <program-name> [ args = "<arguments>" ] }
    #
    # Execute the given program with arguments.
    #
    # You can optionally start the session manager here,
    # but it is better to start it as a systemd service.
    # Run the session manager with -h for options.
    #
    #{ path = "/usr/bin/pipewire-media-session" args = "" }
    #
    # You can optionally start the pulseaudio-server here as well
    # but it is better to start it as a systemd service.
    # It can be interesting to start another daemon here that listens
    # on another address with the -a option (eg. -a tcp:4713).
    #
    #{ path = "/usr/bin/pipewire" args = "-c pipewire-pulse.conf" }
]
pastaq commented 1 year ago

Interesting, the AOKZOE had the same if not similar issue that can be resolved by changing the audio bitrate. I wonder if the fix would be the same. I'll look into this.

It is the same.

DarkValerie commented 1 year ago

I have tried editing my pipewire.conf but for the life of me I can't change permissions and nano says item is unwritable I'm sure I'm doing something wrong I'm that great at Linux and still learning the finer things

ruineka commented 1 year ago

I have tried editing my pipewire.conf but for the life of me I can't change permissions and nano says item is unwritable I'm sure I'm doing something wrong I'm that great at Linux and still learning the finer things

To unlock the filesystem to make changes run sudo frzr-unlock.