Open ghk829 opened 5 years ago
pip install -r advanced_requirements.txt
Check if that tensorflow or keras are installed in your machine or anaconda env
because i ran your code and its run successfully :
Welcome to auto_ml! We're about to go through and make sense of your data using machine learning, and give you a production-ready pipeline to get predictions with.
If you have any issues, or new feature ideas, let us know at http://auto.ml
You are running on version 2.9.10
Now using the model training_params that you passed in:
{}
After overwriting our defaults with your values, here are the final params that will be used to initialize the model:
{'presort': False, 'learning_rate': 0.1, 'warm_start': True}
Running basic data cleaning
Fitting DataFrameVectorizer
Now using the model training_params that you passed in:
{}
After overwriting our defaults with your values, here are the final params that will be used to initialize the model:
{'presort': False, 'learning_rate': 0.1, 'warm_start': True}
********************************************************************************************
About to run GridSearchCV on the pipeline for several models to predict CHAS
Fitting 2 folds for each of 2 candidates, totalling 4 fits
[CV] _scorer=<auto_ml.utils_scoring.RegressionScorer object at 0x7f8174e77780>, model=GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
learning_rate=0.1, loss='ls', max_depth=3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
n_iter_no_change=None, presort=False,
random_state=None, subsample=1.0, tol=0.0001,
validation_fraction=0.1, verbose=0, warm_start=True)
[1] random_holdout_set_from_training_data's score is: -0.244
[2] random_holdout_set_from_training_data's score is: -0.239
[3] random_holdout_set_from_training_data's score is: -0.239
[4] random_holdout_set_from_training_data's score is: -0.234
[5] random_holdout_set_from_training_data's score is: -0.237
[6] random_holdout_set_from_training_data's score is: -0.238
[7] random_holdout_set_from_training_data's score is: -0.237
[8] random_holdout_set_from_training_data's score is: -0.235
[9] random_holdout_set_from_training_data's score is: -0.233
[10] random_holdout_set_from_training_data's score is: -0.232
[11] random_holdout_set_from_training_data's score is: -0.232
[12] random_holdout_set_from_training_data's score is: -0.235
[13] random_holdout_set_from_training_data's score is: -0.236
[14] random_holdout_set_from_training_data's score is: -0.235
[15] random_holdout_set_from_training_data's score is: -0.239
[16] random_holdout_set_from_training_data's score is: -0.239
[17] random_holdout_set_from_training_data's score is: -0.239
[18] random_holdout_set_from_training_data's score is: -0.24
[19] random_holdout_set_from_training_data's score is: -0.241
[20] random_holdout_set_from_training_data's score is: -0.241
[21] random_holdout_set_from_training_data's score is: -0.241
[22] random_holdout_set_from_training_data's score is: -0.242
[23] random_holdout_set_from_training_data's score is: -0.241
[24] random_holdout_set_from_training_data's score is: -0.245
[25] random_holdout_set_from_training_data's score is: -0.245
[26] random_holdout_set_from_training_data's score is: -0.244
[27] random_holdout_set_from_training_data's score is: -0.245
[28] random_holdout_set_from_training_data's score is: -0.246
[29] random_holdout_set_from_training_data's score is: -0.245
[30] random_holdout_set_from_training_data's score is: -0.253
[31] random_holdout_set_from_training_data's score is: -0.254
The number of estimators that were the best for this training dataset: 11
The best score on the holdout set: -0.231888160976642
[CV] _scorer=<auto_ml.utils_scoring.RegressionScorer object at 0x7f8174e77780>, model=GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
learning_rate=0.1, loss='ls', max_depth=3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
n_iter_no_change=None, presort=False,
random_state=None, subsample=1.0, tol=0.0001,
validation_fraction=0.1, verbose=0, warm_start=True), score=-0.256, total= 0.1s
[CV] _scorer=<auto_ml.utils_scoring.RegressionScorer object at 0x7f8174e77780>, model=GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
learning_rate=0.1, loss='ls', max_depth=3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=31,
n_iter_no_change=None, presort=False,
random_state=None, subsample=1.0, tol=0.0001,
validation_fraction=0.1, verbose=0, warm_start=True)
[1] random_holdout_set_from_training_data's score is: -0.229
[2] random_holdout_set_from_training_data's score is: -0.225
[3] random_holdout_set_from_training_data's score is: -0.216
[4] random_holdout_set_from_training_data's score is: -0.215
[5] random_holdout_set_from_training_data's score is: -0.211
[6] random_holdout_set_from_training_data's score is: -0.207
[7] random_holdout_set_from_training_data's score is: -0.206
[8] random_holdout_set_from_training_data's score is: -0.208
[9] random_holdout_set_from_training_data's score is: -0.201
[10] random_holdout_set_from_training_data's score is: -0.2
[11] random_holdout_set_from_training_data's score is: -0.2
[12] random_holdout_set_from_training_data's score is: -0.202
[13] random_holdout_set_from_training_data's score is: -0.197
[14] random_holdout_set_from_training_data's score is: -0.196
[15] random_holdout_set_from_training_data's score is: -0.197
[16] random_holdout_set_from_training_data's score is: -0.198
[17] random_holdout_set_from_training_data's score is: -0.198
[18] random_holdout_set_from_training_data's score is: -0.2
[19] random_holdout_set_from_training_data's score is: -0.201
[20] random_holdout_set_from_training_data's score is: -0.2
[21] random_holdout_set_from_training_data's score is: -0.205
[22] random_holdout_set_from_training_data's score is: -0.206
[23] random_holdout_set_from_training_data's score is: -0.206
[24] random_holdout_set_from_training_data's score is: -0.208
[25] random_holdout_set_from_training_data's score is: -0.205
[26] random_holdout_set_from_training_data's score is: -0.205
[27] random_holdout_set_from_training_data's score is: -0.202
[28] random_holdout_set_from_training_data's score is: -0.202
[29] random_holdout_set_from_training_data's score is: -0.202
[30] random_holdout_set_from_training_data's score is: -0.204
[31] random_holdout_set_from_training_data's score is: -0.205
[32] random_holdout_set_from_training_data's score is: -0.205
[33] random_holdout_set_from_training_data's score is: -0.205
[34] random_holdout_set_from_training_data's score is: -0.206
The number of estimators that were the best for this training dataset: 14
The best score on the holdout set: -0.19568170577598212
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.1s remaining: 0.0s
[CV] _scorer=<auto_ml.utils_scoring.RegressionScorer object at 0x7f8174e77780>, model=GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
learning_rate=0.1, loss='ls', max_depth=3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=31,
n_iter_no_change=None, presort=False,
random_state=None, subsample=1.0, tol=0.0001,
validation_fraction=0.1, verbose=0, warm_start=True), score=-0.248, total= 0.1s
[CV] _scorer=<auto_ml.utils_scoring.RegressionScorer object at 0x7f8174e77780>, model=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)
[CV] _scorer=<auto_ml.utils_scoring.RegressionScorer object at 0x7f8174e77780>, model=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False), score=-0.236, total= 0.1s
[CV] _scorer=<auto_ml.utils_scoring.RegressionScorer object at 0x7f8174e77780>, model=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)
[CV] _scorer=<auto_ml.utils_scoring.RegressionScorer object at 0x7f8174e77780>, model=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False), score=-0.262, total= 0.1s
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.2s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.3s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.4s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.4s finished
The best CV score from our hyperparameter search (by default averaging across k-fold CV) for CHAS is:
-0.24878969905471796
The best params were
{'model': 'RandomForestRegressor'}
Here are all the hyperparameters that were tried:
Score in the following columns always refers to cross-validation score
+--------------+
| mean_score |
|--------------|
| -0.2519 |
| -0.2488 |
+--------------+
Calculating feature responses, for advanced analytics.
Here are our feature responses for the trained model
+----+----------------+---------+-------------------+-------------------+-----------+-----------+
| | Feature Name | Delta | FR_Decrementing | FR_Incrementing | FRD_MAD | FRI_MAD |
|----+----------------+---------+-------------------+-------------------+-----------+-----------|
| 12 | AGE | 13.9801 | 0.0050 | -0.0002 | 0.0000 | 0.0000 |
| 11 | LSTAT | 3.5508 | 0.0263 | 0.0011 | 0.0000 | 0.0000 |
| 10 | ZN | 11.5619 | -0.0005 | 0.0012 | 0.0000 | 0.0000 |
| 9 | DIS | 1.0643 | 0.1068 | 0.0017 | 0.0000 | 0.0000 |
| 8 | B | 45.7266 | -0.0071 | 0.0026 | 0.0000 | 0.0000 |
| 7 | RM | 0.3543 | 0.0022 | 0.0073 | 0.0000 | 0.0000 |
| 6 | TAX | 82.9834 | 0.0111 | -0.0075 | 0.0000 | 0.0000 |
| 5 | PTRATIO | 1.1130 | 0.0111 | -0.0081 | 0.0000 | 0.0000 |
| 4 | MEDV | 4.6603 | -0.0050 | 0.0104 | 0.0000 | 0.0000 |
| 3 | CRIM | 4.4320 | 0.0123 | 0.0221 | 0.0000 | 0.0000 |
| 2 | INDUS | 3.4430 | 0.0060 | 0.0229 | 0.0000 | 0.0000 |
| 1 | RAD | 4.2895 | -0.0021 | 0.0350 | 0.0000 | 0.0000 |
| 0 | NOX | 0.0588 | -0.0099 | 0.0545 | 0.0000 | 0.0000 |
+----+----------------+---------+-------------------+-------------------+-----------+-----------+
<auto_ml.predictor.Predictor at 0x7f81a83eb320>
@loaiabdalslam thank you for checking the issue. What parameters did you set for running process? The same as mine ?
yea just create a new virtual env for python and try installing everything on it
how to put a list of models and let it choose the best in the latest update in the latest documentations? and i didnt get the results of recommend the best model for me.
I run this code
the result only show that