Coder-Yu / SELFRec

An open-source framework for self-supervised recommender systems.
516 stars 76 forks source link

关于SimGCL中的分布图画法 #35

Closed cseekeepmoving closed 1 year ago

cseekeepmoving commented 1 year ago

您好!针对画分布图的这段代码,

ue = open('user', 'rb')
user = pickle.load(ue)
udx = np.random.choice(len(user), 2000)
embs = ['user_lgcn.emb', 'user_sgl.emb', 'user_simgcl.emb']
models = ['LightGCN','SGL-ED','SimGCL']
data = {}

想请教下SimGCL中的分布图画法中的user embedding和item embedding是被优化后的初始embedding:

  def _init_model(self):
      initializer = nn.init.xavier_uniform_
      embedding_dict = nn.ParameterDict({
          'user_emb': nn.Parameter(initializer(torch.empty(self.data.user_num, self.emb_size))),
          'item_emb': nn.Parameter(initializer(torch.empty(self.data.item_num, self.emb_size))),
      })
        return embedding_dict

还是说经过模型forward后得到的user embedding和item embedding呢

Coder-Yu commented 1 year ago

训练完毕之后的经过卷积的final embedding

cseekeepmoving commented 1 year ago

训练完毕之后的经过卷积的final embedding

好的,非常感谢!