The commit I used was 0b1a87fa7ed056f3e5bdfbf12dcf7979c1ac10f8 which is recent one.
Then, without changing any code, I ran the following inference code provided by the repo:
import torch
import transformers
import sys
sys.path.append('./')
from videollama2.conversation import conv_templates, SeparatorStyle
from videollama2.constants import DEFAULT_MMODAL_TOKEN, MMODAL_TOKEN_INDEX
from videollama2.mm_utils import get_model_name_from_path, tokenizer_MMODAL_token, KeywordsStoppingCriteria, process_video, process_image
from videollama2.model.builder import load_pretrained_model
def inference():
# Image Inference
paths = ['assets/sora.png']
questions = ['What is the woman wearing, what is she doing, and how does the image feel?']
# Reply:
# The woman in the image is wearing a black coat and sunglasses, and she is walking down a rain-soaked city street. The image feels vibrant and lively, with the bright city lights reflecting off the wet pavement, creating a visually appealing atmosphere. The woman's presence adds a sense of style and confidence to the scene, as she navigates the bustling urban environment.
modal_list = ['image']
# 1. Initialize the model.
# model_path = 'DAMO-NLP-SG/VideoLLaMA2-8x7B-Base'
model_path = "DAMO-NLP-SG/VideoLLaMA2-7B"
model_name = get_model_name_from_path(model_path)
tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name)
model = model.to('cuda:0')
conv_mode = 'llama2'
# 2. Visual preprocess (load & transform image or video).
if modal_list[0] == 'video':
tensor = process_video(paths[0], processor, model.config.image_aspect_ratio).to(dtype=torch.float16, device='cuda', non_blocking=True)
default_mm_token = DEFAULT_MMODAL_TOKEN["VIDEO"]
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"]
else:
tensor = process_image(paths[0], processor, model.config.image_aspect_ratio)[0].to(dtype=torch.float16, device='cuda', non_blocking=True)
default_mm_token = DEFAULT_MMODAL_TOKEN["IMAGE"]
modal_token_index = MMODAL_TOKEN_INDEX["IMAGE"]
tensor = [tensor]
# 3. Text preprocess (tag process & generate prompt).
question = default_mm_token + "\n" + questions[0]
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt').unsqueeze(0).to('cuda:0')
# 4. Generate a response according to visual signals and prompts.
stop_str = conv.sep if conv.sep_style in [SeparatorStyle.SINGLE] else conv.sep2
# keywords = ["<s>", "</s>"]
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images_or_videos=tensor,
modal_list=modal_list,
do_sample=True,
temperature=0.2,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
print(outputs[0])
if __name__ == "__main__":
inference()
I get the following output:
Loading VideoLLaMA 2 from base model...
You are using a model of type mixtral to instantiate a model of type . This is not supported for all configurations of models and can yield errors.
Downloading shards: 100%|██████████████████████████████████████████████████████████████████████| 19/19 [00:00<00:00, 29.97it/s]
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████| 19/19 [00:03<00:00, 6.20it/s]
Some weights of Videollama2MistralForCausalLM were not initialized from the model checkpoint at mistralai/Mixtral-8x7B-Instruct-v0.1 and are newly initialized: ['model.layers.0.mlp.down_proj.weight', 'model.layers.0.mlp.gate_proj.weight', 'model.layers.0.mlp.up_proj.weight', 'model.layers.1.mlp.down_proj.weight', 'model.layers.1.mlp.gate_proj.weight', 'model.layers.1.mlp.up_proj.weight', 'model.layers.10.mlp.down_proj.weight', 'model.layers.10.mlp.gate_proj.weight', 'model.layers.10.mlp.up_proj.weight', 'model.layers.11.mlp.down_proj.weight', 'model.layers.11.mlp.gate_proj.weight', 'model.layers.11.mlp.up_proj.weight', 'model.layers.12.mlp.down_proj.weight', 'model.layers.12.mlp.gate_proj.weight', 'model.layers.12.mlp.up_proj.weight', 'model.layers.13.mlp.down_proj.weight', 'model.layers.13.mlp.gate_proj.weight', 'model.layers.13.mlp.up_proj.weight', 'model.layers.14.mlp.down_proj.weight', 'model.layers.14.mlp.gate_proj.weight', 'model.layers.14.mlp.up_proj.weight', 'model.layers.15.mlp.down_proj.weight', 'model.layers.15.mlp.gate_proj.weight', 'model.layers.15.mlp.up_proj.weight', 'model.layers.16.mlp.down_proj.weight', 'model.layers.16.mlp.gate_proj.weight', 'model.layers.16.mlp.up_proj.weight', 'model.layers.17.mlp.down_proj.weight', 'model.layers.17.mlp.gate_proj.weight', 'model.layers.17.mlp.up_proj.weight', 'model.layers.18.mlp.down_proj.weight', 'model.layers.18.mlp.gate_proj.weight', 'model.layers.18.mlp.up_proj.weight', 'model.layers.19.mlp.down_proj.weight', 'model.layers.19.mlp.gate_proj.weight', 'model.layers.19.mlp.up_proj.weight', 'model.layers.2.mlp.down_proj.weight', 'model.layers.2.mlp.gate_proj.weight', 'model.layers.2.mlp.up_proj.weight', 'model.layers.20.mlp.down_proj.weight', 'model.layers.20.mlp.gate_proj.weight', 'model.layers.20.mlp.up_proj.weight', 'model.layers.21.mlp.down_proj.weight', 'model.layers.21.mlp.gate_proj.weight', 'model.layers.21.mlp.up_proj.weight', 'model.layers.22.mlp.down_proj.weight', 'model.layers.22.mlp.gate_proj.weight', 'model.layers.22.mlp.up_proj.weight', 'model.layers.23.mlp.down_proj.weight', 'model.layers.23.mlp.gate_proj.weight', 'model.layers.23.mlp.up_proj.weight', 'model.layers.24.mlp.down_proj.weight', 'model.layers.24.mlp.gate_proj.weight', 'model.layers.24.mlp.up_proj.weight', 'model.layers.25.mlp.down_proj.weight', 'model.layers.25.mlp.gate_proj.weight', 'model.layers.25.mlp.up_proj.weight', 'model.layers.26.mlp.down_proj.weight', 'model.layers.26.mlp.gate_proj.weight', 'model.layers.26.mlp.up_proj.weight', 'model.layers.27.mlp.down_proj.weight', 'model.layers.27.mlp.gate_proj.weight', 'model.layers.27.mlp.up_proj.weight', 'model.layers.28.mlp.down_proj.weight', 'model.layers.28.mlp.gate_proj.weight', 'model.layers.28.mlp.up_proj.weight', 'model.layers.29.mlp.down_proj.weight', 'model.layers.29.mlp.gate_proj.weight', 'model.layers.29.mlp.up_proj.weight', 'model.layers.3.mlp.down_proj.weight', 'model.layers.3.mlp.gate_proj.weight', 'model.layers.3.mlp.up_proj.weight', 'model.layers.30.mlp.down_proj.weight', 'model.layers.30.mlp.gate_proj.weight', 'model.layers.30.mlp.up_proj.weight', 'model.layers.31.mlp.down_proj.weight', 'model.layers.31.mlp.gate_proj.weight', 'model.layers.31.mlp.up_proj.weight', 'model.layers.4.mlp.down_proj.weight', 'model.layers.4.mlp.gate_proj.weight', 'model.layers.4.mlp.up_proj.weight', 'model.layers.5.mlp.down_proj.weight', 'model.layers.5.mlp.gate_proj.weight', 'model.layers.5.mlp.up_proj.weight', 'model.layers.6.mlp.down_proj.weight', 'model.layers.6.mlp.gate_proj.weight', 'model.layers.6.mlp.up_proj.weight', 'model.layers.7.mlp.down_proj.weight', 'model.layers.7.mlp.gate_proj.weight', 'model.layers.7.mlp.up_proj.weight', 'model.layers.8.mlp.down_proj.weight', 'model.layers.8.mlp.gate_proj.weight', 'model.layers.8.mlp.up_proj.weight', 'model.layers.9.mlp.down_proj.weight', 'model.layers.9.mlp.gate_proj.weight', 'model.layers.9.mlp.up_proj.weight', 'model.mm_projector.readout.0.bias', 'model.mm_projector.readout.0.weight', 'model.mm_projector.readout.2.bias', 'model.mm_projector.readout.2.weight', 'model.mm_projector.s1.b1.conv1.bn.bias', 'model.mm_projector.s1.b1.conv1.bn.weight', 'model.mm_projector.s1.b1.conv1.conv.weight', 'model.mm_projector.s1.b1.conv2.bn.bias', 'model.mm_projector.s1.b1.conv2.bn.weight', 'model.mm_projector.s1.b1.conv2.conv.weight', 'model.mm_projector.s1.b1.conv3.bn.bias', 'model.mm_projector.s1.b1.conv3.bn.weight', 'model.mm_projector.s1.b1.conv3.conv.weight', 'model.mm_projector.s1.b1.downsample.bn.bias', 'model.mm_projector.s1.b1.downsample.bn.weight', 'model.mm_projector.s1.b1.downsample.conv.weight', 'model.mm_projector.s1.b1.se.fc1.bias', 'model.mm_projector.s1.b1.se.fc1.weight', 'model.mm_projector.s1.b1.se.fc2.bias', 'model.mm_projector.s1.b1.se.fc2.weight', 'model.mm_projector.s1.b2.conv1.bn.bias', 'model.mm_projector.s1.b2.conv1.bn.weight', 'model.mm_projector.s1.b2.conv1.conv.weight', 'model.mm_projector.s1.b2.conv2.bn.bias', 'model.mm_projector.s1.b2.conv2.bn.weight', 'model.mm_projector.s1.b2.conv2.conv.weight', 'model.mm_projector.s1.b2.conv3.bn.bias', 'model.mm_projector.s1.b2.conv3.bn.weight', 'model.mm_projector.s1.b2.conv3.conv.weight', 'model.mm_projector.s1.b2.se.fc1.bias', 'model.mm_projector.s1.b2.se.fc1.weight', 'model.mm_projector.s1.b2.se.fc2.bias', 'model.mm_projector.s1.b2.se.fc2.weight', 'model.mm_projector.s1.b3.conv1.bn.bias', 'model.mm_projector.s1.b3.conv1.bn.weight', 'model.mm_projector.s1.b3.conv1.conv.weight', 'model.mm_projector.s1.b3.conv2.bn.bias', 'model.mm_projector.s1.b3.conv2.bn.weight', 'model.mm_projector.s1.b3.conv2.conv.weight', 'model.mm_projector.s1.b3.conv3.bn.bias', 'model.mm_projector.s1.b3.conv3.bn.weight', 'model.mm_projector.s1.b3.conv3.conv.weight', 'model.mm_projector.s1.b3.se.fc1.bias', 'model.mm_projector.s1.b3.se.fc1.weight', 'model.mm_projector.s1.b3.se.fc2.bias', 'model.mm_projector.s1.b3.se.fc2.weight', 'model.mm_projector.s1.b4.conv1.bn.bias', 'model.mm_projector.s1.b4.conv1.bn.weight', 'model.mm_projector.s1.b4.conv1.conv.weight', 'model.mm_projector.s1.b4.conv2.bn.bias', 'model.mm_projector.s1.b4.conv2.bn.weight', 'model.mm_projector.s1.b4.conv2.conv.weight', 'model.mm_projector.s1.b4.conv3.bn.bias', 'model.mm_projector.s1.b4.conv3.bn.weight', 'model.mm_projector.s1.b4.conv3.conv.weight', 'model.mm_projector.s1.b4.se.fc1.bias', 'model.mm_projector.s1.b4.se.fc1.weight', 'model.mm_projector.s1.b4.se.fc2.bias', 'model.mm_projector.s1.b4.se.fc2.weight', 'model.mm_projector.s2.b1.conv1.bn.bias', 'model.mm_projector.s2.b1.conv1.bn.weight', 'model.mm_projector.s2.b1.conv1.conv.weight', 'model.mm_projector.s2.b1.conv2.bn.bias', 'model.mm_projector.s2.b1.conv2.bn.weight', 'model.mm_projector.s2.b1.conv2.conv.weight', 'model.mm_projector.s2.b1.conv3.bn.bias', 'model.mm_projector.s2.b1.conv3.bn.weight', 'model.mm_projector.s2.b1.conv3.conv.weight', 'model.mm_projector.s2.b1.se.fc1.bias', 'model.mm_projector.s2.b1.se.fc1.weight', 'model.mm_projector.s2.b1.se.fc2.bias', 'model.mm_projector.s2.b1.se.fc2.weight', 'model.mm_projector.s2.b2.conv1.bn.bias', 'model.mm_projector.s2.b2.conv1.bn.weight', 'model.mm_projector.s2.b2.conv1.conv.weight', 'model.mm_projector.s2.b2.conv2.bn.bias', 'model.mm_projector.s2.b2.conv2.bn.weight', 'model.mm_projector.s2.b2.conv2.conv.weight', 'model.mm_projector.s2.b2.conv3.bn.bias', 'model.mm_projector.s2.b2.conv3.bn.weight', 'model.mm_projector.s2.b2.conv3.conv.weight', 'model.mm_projector.s2.b2.se.fc1.bias', 'model.mm_projector.s2.b2.se.fc1.weight', 'model.mm_projector.s2.b2.se.fc2.bias', 'model.mm_projector.s2.b2.se.fc2.weight', 'model.mm_projector.s2.b3.conv1.bn.bias', 'model.mm_projector.s2.b3.conv1.bn.weight', 'model.mm_projector.s2.b3.conv1.conv.weight', 'model.mm_projector.s2.b3.conv2.bn.bias', 'model.mm_projector.s2.b3.conv2.bn.weight', 'model.mm_projector.s2.b3.conv2.conv.weight', 'model.mm_projector.s2.b3.conv3.bn.bias', 'model.mm_projector.s2.b3.conv3.bn.weight', 'model.mm_projector.s2.b3.conv3.conv.weight', 'model.mm_projector.s2.b3.se.fc1.bias', 'model.mm_projector.s2.b3.se.fc1.weight', 'model.mm_projector.s2.b3.se.fc2.bias', 'model.mm_projector.s2.b3.se.fc2.weight', 'model.mm_projector.s2.b4.conv1.bn.bias', 'model.mm_projector.s2.b4.conv1.bn.weight', 'model.mm_projector.s2.b4.conv1.conv.weight', 'model.mm_projector.s2.b4.conv2.bn.bias', 'model.mm_projector.s2.b4.conv2.bn.weight', 'model.mm_projector.s2.b4.conv2.conv.weight', 'model.mm_projector.s2.b4.conv3.bn.bias', 'model.mm_projector.s2.b4.conv3.bn.weight', 'model.mm_projector.s2.b4.conv3.conv.weight', 'model.mm_projector.s2.b4.se.fc1.bias', 'model.mm_projector.s2.b4.se.fc1.weight', 'model.mm_projector.s2.b4.se.fc2.bias', 'model.mm_projector.s2.b4.se.fc2.weight', 'model.mm_projector.sampler.0.bias', 'model.mm_projector.sampler.0.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
You shouldn't move a model when it is dispatched on multiple devices.
Segmentation fault (core dumped)
Similar things happen with other model versions like Mixtral 8x7B, or the Base models.
How should I fix it?
I installed the repo with the provided script:
The commit I used was
0b1a87fa7ed056f3e5bdfbf12dcf7979c1ac10f8
which is recent one.Then, without changing any code, I ran the following inference code provided by the repo:
I get the following output:
Similar things happen with other model versions like Mixtral 8x7B, or the Base models. How should I fix it?