Open liunelson opened 4 days ago
Re-running the prompt above gave me code with incorrect logic unfortunately:
import pandas as pd
# Convert 'date' columns in all dataframes to datetime for proper manipulation
d1['date'] = pd.to_datetime(d1['date'])
d2['date'] = pd.to_datetime(d2['date'])
d3['date'] = pd.to_datetime(d3['date'])
# Sort dataframes by date to ensure correct rolling calculations
d1 = d1.sort_values('date')
d2 = d2.sort_values('date')
d3 = d3.sort_values('date')
# Calculate 'Infected' (I) category
d1['I'] = d1['value'] - d1['value'].shift(14)
d1['I'] = d1['I'].fillna(0).apply(lambda x: max(x, 0.0))
# Calculate 'Recovered' (R) category
d1['R'] = d1['value'].shift(14)
d1['R'] = d1['R'].fillna(0).apply(lambda x: max(x, 0.0))
# Calculate 'Hospitalized' (H) category
d2['H'] = d2['value'] - d2['value'].shift(10)
d2['H'] = d2['H'].fillna(0).apply(lambda x: max(x, 0.0))
# 'Dead' (D) category directly comes from d3
d3['D'] = d3['value'].apply(lambda x: max(x, 0.0))
# Calculate 'Susceptible' (S) category
# First, ensure we have a common date range for all calculations
common_dates = set(d1['date']) & set(d2['date']) & set(d3['date'])
df_I = d1[d1['date'].isin(common_dates)][['date', 'I']]
df_R = d1[d1['date'].isin(common_dates)][['date', 'R']]
df_H = d2[d2['date'].isin(common_dates)][['date', 'H']]
df_D = d3[d3['date'].isin(common_dates)][['date', 'D']]
# Merge dataframes on 'date' to align all calculations
df_merged = pd.merge(pd.merge(pd.merge(df_I, df_R, on='date'), df_H, on='date'), df_D, on='date')
# Calculate 'Susceptible' (S)
total_population = 320e6
df_merged['S'] = total_population - df_merged['I'] - df_merged['R'] - df_merged['H'] - df_merged['D']
df_merged['S'] = df_merged['S'].apply(lambda x: max(x, 0.0))
# Selecting the final dataframe to display the compartmentalized data
df_final = df_merged[['date', 'S', 'I', 'R', 'H', 'D']]
# Display the head of the final dataframe to verify the calculations
print(df_final.head())
A picture = a thousand words
The left operator shows the correct result while the right one is showing results calculated using the code from rerunning the prompt above.
@liunelson looking into these....in the first comment, is that code correct? If not, do you have the corrected code by any chance?
@liunelson are you testing with these datasets:
{"d1":"2fb95ea8-8e71-47c6-b6a9-9c2d6d31484e",
"d2": "06a36516-f4ad-4233-a5fe-dd4a2e3343cd",
"d3":"561b00ad-331f-4d0c-8eb2-0dd813290eef"}
The issue is that they have a bunch of locations so need to be filtered first (e.g. to just United States
). In that plot on the right in your screenshot I think what we're seeing is a whole bunch of values for the same date (due to multiple locations on that date). Still poking at it to confirm though
@liunelson testing with those datasets I referenced above (staging) everything seems to work for me just fine once I filter for location.
There are some minor bugs in the code generated from the incidence-to-prevalence prompt.
I had to edit the prompt and code a bit to get the right behaviour:
The code is:
The particular edits are:
min_periods = 1
on the rolling sums to avoidnp.na
showingI, H
variablesfill_value = 0.0
to the cumulative sum forR