Open LyuJZ opened 12 months ago
Hello, what have you tried so far (see also links in our doc, please provide minimal and working code) and what is the current issue?
I tried to create a wrapper based on this template. The following is my code
import isaacgym
from isaacgymenvs.tasks.base.vec_task import VecTask
from isaacgymenvs.tasks.kuka_reaching import KukaReaching
import hydra
from omegaconf import DictConfig, OmegaConf
import gymnasium as gym
import numpy as np
import torch
from typing import Any, Dict, List
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs, VecEnvStepReturn
class Sb3VecEnvWrapper(gym.Wrapper, VecEnv):
def __init__(self, env: VecTask):
gym.Wrapper.__init__(self, env)
VecEnv.__init__(self, self.env.num_envs, self.env.observation_space, self.env.action_space)
self._ep_rew_buf = torch.zeros(self.env.num_envs, dtype=torch.float, device=self.env.device)
self._ep_len_buf = torch.zeros(self.env.num_envs, dtype=torch.float, device=self.env.device)
def get_episode_rewards(self) -> List[float]:
"""Returns the rewards of all the episodes."""
return self._ep_rew_buf.cpu().tolist()
def get_episode_lengths(self) -> List[int]:
"""Returns the number of time-steps of all the episodes."""
return self._ep_len_buf.cpu().tolist()
def reset(self) -> VecEnvObs: # noqa: D102
obs_dict = self.env.reset()
# convert data types to numpy depending on backend
return self._process_obs(obs_dict)
def step(self, actions: np.ndarray) -> VecEnvStepReturn: # noqa: D102
# convert input to numpy array
actions = np.asarray(actions)
# convert to tensor
actions = torch.from_numpy(actions).to(device=self.env.device)
# record step information
obs_dict, rew, dones, extras = self.env.step(actions)
# update episode un-discounted return and length
self._ep_rew_buf += rew
self._ep_len_buf += 1
reset_ids = (dones > 0).nonzero(as_tuple=False)
# convert data types to numpy depending on backend
# Note: IsaacEnv uses torch backend (by default).
obs = self._process_obs(obs_dict)
rew = rew.cpu().numpy()
dones = dones.cpu().numpy()
# convert extra information to list of dicts
infos = self._process_extras(obs, dones, extras, reset_ids)
# reset info for terminated environments
self._ep_rew_buf[reset_ids] = 0
self._ep_len_buf[reset_ids] = 0
return obs, rew, dones, infos
"""
Unused methods.
"""
def step_async(self, actions): # noqa: D102
self._async_actions = actions
def step_wait(self): # noqa: D102
return self.step(self._async_actions)
def get_attr(self, attr_name, indices): # noqa: D102
raise NotImplementedError
def set_attr(self, attr_name, value, indices=None): # noqa: D102
raise NotImplementedError
def env_method(self, method_name: str, *method_args, indices=None, **method_kwargs): # noqa: D102
raise NotImplementedError
def env_is_wrapped(self, wrapper_class, indices=None): # noqa: D102
raise NotImplementedError
def get_images(self): # noqa: D102
raise NotImplementedError
"""
Helper functions.
"""
def _process_obs(self, obs_dict) -> np.ndarray:
"""Convert observations into NumPy data type."""
# Sb3 doesn't support asymmetric observation spaces, so we only use "policy"
obs = obs_dict["policy"]
# Note: IsaacEnv uses torch backend (by default).
if self.env.sim.backend == "torch":
if isinstance(obs, dict):
for key, value in obs.items():
obs[key] = value.detach().cpu().numpy()
else:
obs = obs.detach().cpu().numpy()
elif self.env.sim.backend == "numpy":
pass
else:
raise NotImplementedError(f"Unsupported backend for simulation: {self.env.sim.backend}")
return obs
def _process_extras(self, obs, dones, extras, reset_ids) -> List[Dict[str, Any]]:
"""Convert miscellaneous information into dictionary for each sub-environment."""
# create empty list of dictionaries to fill
infos: List[Dict[str, Any]] = [dict.fromkeys(extras.keys()) for _ in range(self.env.num_envs)]
# fill-in information for each sub-environment
# Note: This loop becomes slow when number of environments is large.
for idx in range(self.env.num_envs):
# fill-in episode monitoring info
if idx in reset_ids:
infos[idx]["episode"] = dict()
infos[idx]["episode"]["r"] = float(self._ep_rew_buf[idx])
infos[idx]["episode"]["l"] = float(self._ep_len_buf[idx])
else:
infos[idx]["episode"] = None
# fill-in information from extras
for key, value in extras.items():
# 1. remap the key for time-outs for what SB3 expects
# 2. remap extra episodes information safely
# 3. for others just store their values
if key == "time_outs":
infos[idx]["TimeLimit.truncated"] = bool(value[idx])
elif key == "episode":
# only log this data for episodes that are terminated
if infos[idx]["episode"] is not None:
for sub_key, sub_value in value.items():
infos[idx]["episode"][sub_key] = sub_value
else:
infos[idx][key] = value[idx]
# add information about terminal observation separately
if dones[idx] == 1:
# extract terminal observations
if isinstance(obs, dict):
terminal_obs = dict.fromkeys(obs.keys())
for key, value in obs.items():
terminal_obs[key] = value[idx]
else:
terminal_obs = obs[idx]
# add info to dict
infos[idx]["terminal_observation"] = terminal_obs
else:
infos[idx]["terminal_observation"] = None
# return list of dictionaries
return infos
@hydra.main(version_base="1.1", config_name="config", config_path="./cfg")
def launch_rlg_hydra(cfg: DictConfig):
import logging
import os
from datetime import datetime
# noinspection PyUnresolvedReferences
import isaacgym
from isaacgymenvs.pbt.pbt import PbtAlgoObserver, initial_pbt_check
from isaacgymenvs.utils.rlgames_utils import multi_gpu_get_rank
from hydra.utils import to_absolute_path
from isaacgymenvs.tasks import isaacgym_task_map
import gym
from isaacgymenvs.utils.reformat import omegaconf_to_dict, print_dict
from isaacgymenvs.utils.utils import set_np_formatting, set_seed
if cfg.pbt.enabled:
initial_pbt_check(cfg)
from isaacgymenvs.utils.rlgames_utils import RLGPUEnv, RLGPUAlgoObserver, MultiObserver, ComplexObsRLGPUEnv
from isaacgymenvs.utils.wandb_utils import WandbAlgoObserver
from rl_games.common import env_configurations, vecenv
from rl_games.torch_runner import Runner
from rl_games.algos_torch import model_builder
from isaacgymenvs.learning import amp_continuous
from isaacgymenvs.learning import amp_players
from isaacgymenvs.learning import amp_models
from isaacgymenvs.learning import amp_network_builder
import isaacgymenvs
time_str = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
run_name = f"{cfg.wandb_name}_{time_str}"
# ensure checkpoints can be specified as relative paths
if cfg.checkpoint:
cfg.checkpoint = to_absolute_path(cfg.checkpoint)
cfg_dict = omegaconf_to_dict(cfg)
task_config = omegaconf_to_dict(cfg.task)
task_name = "KukaReaching"
cuda = True
# create native task and pass custom config
envs = isaacgymenvs.make(
seed=1,
task=task_name,
num_envs=8192,
sim_device="cuda:0",
rl_device="cuda:0",
graphics_device_id=0 if torch.cuda.is_available() and cuda else -1,
headless=False if torch.cuda.is_available() and cuda else True,
multi_gpu=False,
virtual_screen_capture=False,
force_render=False, # if False, no viewer rendering will happen
)
sb3Env = Sb3VecEnvWrapper(envs)
if __name__ == "__main__":
launch_rlg_hydra()
KukaReaching is the env to be wrapped from isaacgymenvs. Is it the correct way to create the wrapper like this? VecEnv.__init__(self, self.env.num_envs, self.env.observation_space, self.env.action_space)
always gives me an error _get_attr() missing 1 required positional argument: 'indices'_
could you please give the full traceback ?
The error seems from self.get_attr("render_mode")
. The full traceback is
Traceback (most recent call last):
File "/src/handover-kuka-reaching/wrappers.py", line 519, in launch_rlg_hydra
sb3Env = Sb3VecEnvWrapper(envs)
File "/src/handover-rl/kuka-reaching/wrappers.py", line 325, in __init__
VecEnv.__init__(self, self.env.num_envs, self.env.observation_space, self.env.action_space)
File "/anaconda3/envs/acmpc/lib/python3.8/site-packages/stable_baselines3/common/vec_env/base_vec_env.py", line 75, in __init__
render_modes = self.get_attr("render_mode")
TypeError: get_attr() missing 1 required positional argument: 'indices'
I found the problems. It is because I redefine abstract methods. Now I changed these abstract methods as follow:
def step_async(self, actions): # noqa: D102
self._async_actions = actions
def step_wait(self): # noqa: D102
return self.step(self._async_actions)
def get_attr(self, attr_name, indices=None): # noqa: D102
return self.env.get_attr(attr_name, indices)
# raise NotImplementedError
def set_attr(self, attr_name, value, indices=None): # noqa: D102
return self.env.set_attr(attr_name, value, indices)
def env_method(self, method_name: str, *method_args, indices=None, **method_kwargs): # noqa: D102
return self.env.env_method(method_name, *method_args, indices=indices, **method_kwargs)
def env_is_wrapped(self, wrapper_class, indices=None): # noqa: D102
return self.env.env_is_wrapped(wrapper_class, indices=indices)
def get_images(self): # noqa: D102
return self.env.get_images()
Now, I got new errors like this:
Traceback (most recent call last):
File "/src/handover-rl/kuka-reaching/wrappers.py", line 215, in launch_rlg_hydra
sb3Env = Sb3VecEnvWrapper(envs)
File "/src/handover-rl/kuka-reaching/wrappers.py", line 20, in __init__
VecEnv.__init__(self, self.env.num_envs, self.env.observation_space, self.env.action_space)
File "/anaconda3/envs/acmpc/lib/python3.8/site-packages/stable_baselines3/common/vec_env/base_vec_env.py", line 83, in __init__
self.render_mode = render_modes[0]
AttributeError: can't set attribute
Hmm, it's weird that the wrapper is deriving from both gym Wrapper and SB3 VecEnv and I guess that's the issue.
So if you only derive from VecEnv
it should make things simpler.
Is it possible to give one example to wrap IsaacGym VecEnv into sb3 VecEnv?
Remove gym.Wrapper
and gym.Wrapper.__init__(self, env)
I revised the code a little bit and now it works! Thanks a lot
hello, I want to combine the IsaacGym Preview4 with sb3 and get rid of the rlgames, just like you do I guess.
So I am trying to reproduce what you have done. Precisely, I
train.py
which can be used for rlgames-based training, However, there seems to be some other modification to make it work. Could you please share the whole code?
In addition, while I was able to get the code to run, it wasn't as fast as rlgames. I guess it is caused by the conversion between numpy and torch involved in sb3. Is there a way to accelerate it?
Hi, thanks a lot for the well-documented stable baselines3. Now I am using Isaac Gym Preview4. May I ask if it is possible to give some examples to wrap IsaacGymEnvs into VecEnv? I noticed this issue was mentioned before. And some tips have been given in the issue https://github.com/DLR-RM/stable-baselines3/issues/772. However, it seems it is for Isaac Gym Preview3. Could you give one example for Isaac Gym Preview 4?
Checklist