DataCTE / SDXL-Training-Improvements

Apache License 2.0
39 stars 0 forks source link

Incomplete W&B Logging - Missing Critical Training Metrics #4

Open DataCTE opened 6 days ago

DataCTE commented 6 days ago

Description

Current W&B logging implementation is missing several critical metrics and visualizations needed for proper training monitoring. Need to implement comprehensive logging of all training aspects.

Missing Metrics

  1. VAE Training:

    • Reconstruction loss
    • Latent space statistics
    • VAE gradients
  2. UNet Training:

    • Per-step sigma values
    • Noise prediction accuracy
    • Gradient norms
  3. Validation:

    • ZTSNR effectiveness metrics
    • High-resolution coherence scores
    • Sample image quality metrics

Implementation Plan

# Add to training loop:
if args.use_wandb:
    wandb.log({
        # Training metrics
        'train/unet_loss': loss.item(),
        'train/weighted_loss': weighted_loss.item(),
        'train/grad_norm': grad_norm,
        'train/sigma': sigma.mean().item(),

        # VAE metrics
        'vae/reconstruction_loss': vae_loss,
        'vae/latent_mean': latent_mean,
        'vae/latent_std': latent_std,

        # Learning rates
        'lr/unet': lr_scheduler.get_last_lr()[0],
        'lr/vae': vae_lr_scheduler.get_last_lr()[0],

        # System metrics
        'system/gpu_memory': torch.cuda.memory_allocated(),
        'system/gpu_utilization': gpu_utilization,
    })

Additional Features Needed

  1. Custom W&B panels for:

    • Training progress visualization
    • Sample image comparison
    • Validation metrics tracking
    • System resource monitoring
  2. Automatic logging of:

    • Model architecture
    • Training configuration
    • System information
    • Git commit information

Priority: High

Proper logging is crucial for debugging and monitoring training progress.