DataDog / datadog-agent

Main repository for Datadog Agent
https://docs.datadoghq.com/
Apache License 2.0
2.9k stars 1.21k forks source link

Import python relatively on macOS #31426

Open Pythyu opened 19 hours ago

Pythyu commented 19 hours ago

What does this PR do?

Allow python to be imported relatively on macOS

Motivation

Since we support custom build directory on macOS now #29692, we are using RPATH instead of true paths and we need python variables to be relative as well.

Describe how to test/QA your changes

Possible Drawbacks / Trade-offs

Additional Notes

Pythyu commented 19 hours ago

I have done the QA steps myself but I'd like someone else to do them as well before I'm putting the qa/done tag

agent-platform-auto-pr[bot] commented 18 hours ago

Test changes on VM

Use this command from test-infra-definitions to manually test this PR changes on a VM:

inv create-vm --pipeline-id=49868544 --os-family=ubuntu

Note: This applies to commit bb84cf81

cit-pr-commenter[bot] commented 17 hours ago

Regression Detector

Regression Detector Results

Metrics dashboard
Target profiles
Run ID: 99e0375a-debc-4cd0-9053-5eb2c9c36331

Baseline: 410b1ae7d7aca9a119d9f9709d4091373f4e0890 Comparison: bb84cf8166e2d1623f455231c93fa483e60ac470 Diff

Optimization Goals: ✅ No significant changes detected

Fine details of change detection per experiment

| perf | experiment | goal | Δ mean % | Δ mean % CI | trials | links | |------|----------------------------------------------|--------------------|----------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ➖ | quality_gate_idle_all_features | memory utilization | +2.37 | [+2.28, +2.47] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Aquality_gate_idle_all_features%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle_all_features&tpl_var_job_id%5B0%5D=99e0375a-debc-4cd0-9053-5eb2c9c36331&tpl_var_run-id%5B0%5D=99e0375a-debc-4cd0-9053-5eb2c9c36331&view=spans&from_ts=1732550648000&to_ts=1732551248000&live=false) | | ➖ | otel_to_otel_logs | ingress throughput | +0.73 | [+0.08, +1.37] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Aotel_to_otel_logs%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | file_to_blackhole_1000ms_latency | egress throughput | +0.46 | [-0.32, +1.24] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_1000ms_latency%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | quality_gate_idle | memory utilization | +0.40 | [+0.35, +0.44] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Aquality_gate_idle%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle&tpl_var_job_id%5B0%5D=99e0375a-debc-4cd0-9053-5eb2c9c36331&tpl_var_run-id%5B0%5D=99e0375a-debc-4cd0-9053-5eb2c9c36331&view=spans&from_ts=1732550648000&to_ts=1732551248000&live=false) | | ➖ | uds_dogstatsd_to_api_cpu | % cpu utilization | +0.14 | [-0.59, +0.87] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Auds_dogstatsd_to_api_cpu%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | uds_dogstatsd_to_api | ingress throughput | +0.02 | [-0.08, +0.12] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Auds_dogstatsd_to_api%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | tcp_dd_logs_filter_exclude | ingress throughput | -0.00 | [-0.01, +0.01] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Atcp_dd_logs_filter_exclude%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | file_to_blackhole_0ms_latency | egress throughput | -0.01 | [-0.71, +0.68] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_0ms_latency%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | file_to_blackhole_500ms_latency | egress throughput | -0.05 | [-0.84, +0.73] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_500ms_latency%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | file_to_blackhole_100ms_latency | egress throughput | -0.06 | [-0.75, +0.63] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_100ms_latency%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | file_to_blackhole_1000ms_latency_linear_load | egress throughput | -0.07 | [-0.53, +0.38] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_1000ms_latency_linear_load%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | file_to_blackhole_300ms_latency | egress throughput | -0.09 | [-0.72, +0.54] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_300ms_latency%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | tcp_syslog_to_blackhole | ingress throughput | -0.23 | [-0.28, -0.18] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Atcp_syslog_to_blackhole%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | file_tree | memory utilization | -0.66 | [-0.80, -0.53] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_tree%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | basic_py_check | % cpu utilization | -1.80 | [-5.73, +2.13] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Abasic_py_check%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) | | ➖ | pycheck_lots_of_tags | % cpu utilization | -3.86 | [-7.43, -0.30] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Apycheck_lots_of_tags%20run_id%3A99e0375a-debc-4cd0-9053-5eb2c9c36331&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732543448000&to_ts=1732554848000&live=false) |

Bounds Checks: ✅ Passed

| perf | experiment | bounds_check_name | replicates_passed | links | |------|----------------------------------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ✅ | file_to_blackhole_0ms_latency | lost_bytes | 10/10 | | | ✅ | file_to_blackhole_0ms_latency | memory_usage | 10/10 | | | ✅ | file_to_blackhole_1000ms_latency | memory_usage | 10/10 | | | ✅ | file_to_blackhole_1000ms_latency_linear_load | memory_usage | 10/10 | | | ✅ | file_to_blackhole_100ms_latency | lost_bytes | 10/10 | | | ✅ | file_to_blackhole_100ms_latency | memory_usage | 10/10 | | | ✅ | file_to_blackhole_300ms_latency | lost_bytes | 10/10 | | | ✅ | file_to_blackhole_300ms_latency | memory_usage | 10/10 | | | ✅ | file_to_blackhole_500ms_latency | lost_bytes | 10/10 | | | ✅ | file_to_blackhole_500ms_latency | memory_usage | 10/10 | | | ✅ | quality_gate_idle | memory_usage | 10/10 | [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle&tpl_var_job_id%5B0%5D=99e0375a-debc-4cd0-9053-5eb2c9c36331&tpl_var_run-id%5B0%5D=99e0375a-debc-4cd0-9053-5eb2c9c36331&view=spans&from_ts=1732550648000&to_ts=1732551248000&live=false) | | ✅ | quality_gate_idle_all_features | memory_usage | 10/10 | [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle_all_features&tpl_var_job_id%5B0%5D=99e0375a-debc-4cd0-9053-5eb2c9c36331&tpl_var_run-id%5B0%5D=99e0375a-debc-4cd0-9053-5eb2c9c36331&view=spans&from_ts=1732550648000&to_ts=1732551248000&live=false) |

Explanation

**Confidence level:** 90.00% **Effect size tolerance:** |Δ mean %| ≥ 5.00% Performance changes are noted in the **perf** column of each table: * ✅ = significantly better comparison variant performance * ❌ = significantly worse comparison variant performance * ➖ = no significant change in performance A regression test is an A/B test of target performance in a repeatable rig, where "performance" is measured as "comparison variant minus baseline variant" for an optimization goal (e.g., ingress throughput). Due to intrinsic variability in measuring that goal, we can only estimate its mean value for each experiment; we report uncertainty in that value as a 90.00% confidence interval denoted "Δ mean % CI". For each experiment, we decide whether a change in performance is a "regression" -- a change worth investigating further -- if all of the following criteria are true: 1. Its estimated |Δ mean %| ≥ 5.00%, indicating the change is big enough to merit a closer look. 2. Its 90.00% confidence interval "Δ mean % CI" does not contain zero, indicating that *if our statistical model is accurate*, there is at least a 90.00% chance there is a difference in performance between baseline and comparison variants. 3. Its configuration does not mark it "erratic".

CI Pass/Fail Decision

Passed. All Quality Gates passed.

Pythyu commented 16 minutes ago

/merge

dd-devflow[bot] commented 15 minutes ago

Devflow running: /merge

View all feedbacks in Devflow UI.


2024-11-26 10:10:09 UTC :information_source: MergeQueue: waiting for PR to be ready

This merge request is not mergeable yet, because of pending checks/missing approvals. It will be added to the queue as soon as checks pass and/or get approvals. Note: if you pushed new commits since the last approval, you may need additional approval. You can remove it from the waiting list with /remove command.


2024-11-26 10:11:16 UTC :information_source: MergeQueue: merge request added to the queue

The median merge time in main is 23m.


2024-11-26 10:16:09 UTC :warning: MergeQueue: This merge request build was cancelled

This merge request build was cancelled

Pythyu commented 10 minutes ago

/merge --cancel