DataDog / datadog-agent

Main repository for Datadog Agent
https://docs.datadoghq.com/
Apache License 2.0
2.9k stars 1.21k forks source link

Bump github.com/stretchr/testify from 1.9.0 to 1.10.0 in /test/fakeintake #31449

Open dependabot[bot] opened 14 hours ago

dependabot[bot] commented 14 hours ago

Bumps github.com/stretchr/testify from 1.9.0 to 1.10.0.

Release notes

Sourced from github.com/stretchr/testify's releases.

v1.10.0

What's Changed

Functional Changes

Fixes

Documantation, Build & CI

New Contributors

... (truncated)

Commits
  • 89cbdd9 Merge pull request #1626 from arjun-1/fix-functional-options-diff-indirect-calls
  • 07bac60 Merge pull request #1667 from sikehish/flaky
  • 716de8d Increase timeouts in Test_Mock_Called_blocks to reduce flakiness in CI
  • 118fb83 NotSame should fail if args are not pointers #1661 (#1664)
  • 7d99b2b attempt 2
  • 05f87c0 more similar
  • ea7129e better fmt
  • a1b9c9e Merge pull request #1663 from ybrustin/master
  • 8302de9 Merge branch 'master' into master
  • 89352f7 Merge pull request #1518 from hendrywiranto/adjust-readme-remove-v2
  • Additional commits viewable in compare view


Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
agent-platform-auto-pr[bot] commented 13 hours ago

[Fast Unit Tests Report]

On pipeline 49906829 (CI Visibility). The following jobs did not run any unit tests:

Jobs: - tests_windows-x64

If you modified Go files and expected unit tests to run in these jobs, please double check the job logs. If you think tests should have been executed reach out to #agent-devx-help

cit-pr-commenter[bot] commented 13 hours ago

Regression Detector

Regression Detector Results

Metrics dashboard
Target profiles
Run ID: e2ae3d72-fb91-4381-b17e-75405563b576

Baseline: 88703d8e3b462deac3f889d4e8efac46567d0e7e Comparison: 380ffac354707152f3f444d6027a48e8bfdef383 Diff

Optimization Goals: ✅ No significant changes detected

Fine details of change detection per experiment

| perf | experiment | goal | Δ mean % | Δ mean % CI | trials | links | |------|----------------------------------------------|--------------------|----------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ➖ | pycheck_lots_of_tags | % cpu utilization | +0.77 | [-2.79, +4.32] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Apycheck_lots_of_tags%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | file_to_blackhole_1000ms_latency_linear_load | egress throughput | +0.50 | [+0.04, +0.96] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_1000ms_latency_linear_load%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | quality_gate_idle | memory utilization | +0.20 | [+0.15, +0.25] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Aquality_gate_idle%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle&tpl_var_job_id%5B0%5D=e2ae3d72-fb91-4381-b17e-75405563b576&tpl_var_run-id%5B0%5D=e2ae3d72-fb91-4381-b17e-75405563b576&view=spans&from_ts=1732569156000&to_ts=1732569756000&live=false) | | ➖ | file_to_blackhole_300ms_latency | egress throughput | +0.02 | [-0.61, +0.65] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_300ms_latency%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | file_to_blackhole_100ms_latency | egress throughput | +0.02 | [-0.69, +0.73] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_100ms_latency%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | uds_dogstatsd_to_api | ingress throughput | +0.01 | [-0.10, +0.13] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Auds_dogstatsd_to_api%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | file_to_blackhole_500ms_latency | egress throughput | +0.01 | [-0.76, +0.78] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_500ms_latency%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | tcp_dd_logs_filter_exclude | ingress throughput | -0.00 | [-0.01, +0.01] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Atcp_dd_logs_filter_exclude%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | file_to_blackhole_0ms_latency | egress throughput | -0.05 | [-0.95, +0.86] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_0ms_latency%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | otel_to_otel_logs | ingress throughput | -0.18 | [-0.84, +0.47] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Aotel_to_otel_logs%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | file_to_blackhole_1000ms_latency | egress throughput | -0.36 | [-1.14, +0.41] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_to_blackhole_1000ms_latency%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | file_tree | memory utilization | -0.97 | [-1.08, -0.87] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Afile_tree%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | uds_dogstatsd_to_api_cpu | % cpu utilization | -1.35 | [-2.09, -0.62] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Auds_dogstatsd_to_api_cpu%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | tcp_syslog_to_blackhole | ingress throughput | -1.62 | [-1.67, -1.56] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Atcp_syslog_to_blackhole%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) | | ➖ | quality_gate_idle_all_features | memory utilization | -2.62 | [-2.76, -2.49] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Aquality_gate_idle_all_features%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle_all_features&tpl_var_job_id%5B0%5D=e2ae3d72-fb91-4381-b17e-75405563b576&tpl_var_run-id%5B0%5D=e2ae3d72-fb91-4381-b17e-75405563b576&view=spans&from_ts=1732569156000&to_ts=1732569756000&live=false) | | ➖ | basic_py_check | % cpu utilization | -2.75 | [-6.56, +1.06] | 1 | [Logs](https://app.datadoghq.com/logs?query=experiment%3Abasic_py_check%20run_id%3Ae2ae3d72-fb91-4381-b17e-75405563b576&agg_m=count&agg_m_source=base&agg_q=%40span.url&agg_q_source=base&agg_t=count&fromUser=true&index=single-machine-performance-target-logs&messageDisplay=inline&refresh_mode=paused&storage=hot&stream_sort=time%2Cdesc&top_n=100&top_o=top&viz=stream&x_missing=true&from_ts=1732561956000&to_ts=1732573356000&live=false) |

Bounds Checks: ✅ Passed

| perf | experiment | bounds_check_name | replicates_passed | links | |------|----------------------------------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ✅ | file_to_blackhole_0ms_latency | lost_bytes | 10/10 | | | ✅ | file_to_blackhole_0ms_latency | memory_usage | 10/10 | | | ✅ | file_to_blackhole_1000ms_latency | memory_usage | 10/10 | | | ✅ | file_to_blackhole_1000ms_latency_linear_load | memory_usage | 10/10 | | | ✅ | file_to_blackhole_100ms_latency | lost_bytes | 10/10 | | | ✅ | file_to_blackhole_100ms_latency | memory_usage | 10/10 | | | ✅ | file_to_blackhole_300ms_latency | lost_bytes | 10/10 | | | ✅ | file_to_blackhole_300ms_latency | memory_usage | 10/10 | | | ✅ | file_to_blackhole_500ms_latency | lost_bytes | 10/10 | | | ✅ | file_to_blackhole_500ms_latency | memory_usage | 10/10 | | | ✅ | quality_gate_idle | memory_usage | 10/10 | [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle&tpl_var_job_id%5B0%5D=e2ae3d72-fb91-4381-b17e-75405563b576&tpl_var_run-id%5B0%5D=e2ae3d72-fb91-4381-b17e-75405563b576&view=spans&from_ts=1732569156000&to_ts=1732569756000&live=false) | | ✅ | quality_gate_idle_all_features | memory_usage | 10/10 | [bounds checks dashboard](https://app.datadoghq.com/dashboard/vz3-jd5-bdi?fromUser=true&refresh_mode=paused&tpl_var_experiment%5B0%5D=quality_gate_idle_all_features&tpl_var_job_id%5B0%5D=e2ae3d72-fb91-4381-b17e-75405563b576&tpl_var_run-id%5B0%5D=e2ae3d72-fb91-4381-b17e-75405563b576&view=spans&from_ts=1732569156000&to_ts=1732569756000&live=false) |

Explanation

**Confidence level:** 90.00% **Effect size tolerance:** |Δ mean %| ≥ 5.00% Performance changes are noted in the **perf** column of each table: * ✅ = significantly better comparison variant performance * ❌ = significantly worse comparison variant performance * ➖ = no significant change in performance A regression test is an A/B test of target performance in a repeatable rig, where "performance" is measured as "comparison variant minus baseline variant" for an optimization goal (e.g., ingress throughput). Due to intrinsic variability in measuring that goal, we can only estimate its mean value for each experiment; we report uncertainty in that value as a 90.00% confidence interval denoted "Δ mean % CI". For each experiment, we decide whether a change in performance is a "regression" -- a change worth investigating further -- if all of the following criteria are true: 1. Its estimated |Δ mean %| ≥ 5.00%, indicating the change is big enough to merit a closer look. 2. Its 90.00% confidence interval "Δ mean % CI" does not contain zero, indicating that *if our statistical model is accurate*, there is at least a 90.00% chance there is a difference in performance between baseline and comparison variants. 3. Its configuration does not mark it "erratic".

CI Pass/Fail Decision

Passed. All Quality Gates passed.