Closed DeclanMcrory closed 1 month ago
To complete the project, we need to implement the necessary files as outlined in the "Changes to files" section. This involves setting up the required dependencies, creating a web interface for the Music Video Generator, implementing the training logic for the model, and defining the model architecture.
We need to list all the Python packages required to run the project. This includes libraries for machine learning, data processing, and web development.
numpy==1.21.2
pandas==1.3.3
scikit-learn==0.24.2
tensorflow==2.6.0 # or torch==1.9.0 if using PyTorch
opencv-python==4.5.3.56
flask==2.0.1
flask-cors==3.0.10
matplotlib==3.4.3
requests==2.26.0
gunicorn==20.1.0
We will create a Flask web application to handle file uploads and integrate with the model to generate music videos.
from flask import Flask, request, render_template, redirect, url_for
import os
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads/'
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload_file():
if 'file' not in request.files:
return redirect(request.url)
file = request.files['file']
if file.filename == '':
return redirect(request.url)
if file:
filepath = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
file.save(filepath)
# Here you would call your model to process the file
# For example: result = generate_music_video(filepath)
return redirect(url_for('result', filename=file.filename))
@app.route('/result/<filename>')
def result(filename):
# Here you would retrieve and display the result
# For example: result = get_result_for_file(filename)
return render_template('result.html', filename=filename)
if __name__ == '__main__':
app.run(debug=True)
Create a folder named templates
in the same directory as app.py
and add the following HTML files:
index.html
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Music Video Generator</title>
</head>
<body>
<h1>Upload a Music File</h1>
<form action="{{ url_for('upload_file') }}" method="post" enctype="multipart/form-data">
<input type="file" name="file">
<input type="submit" value="Upload">
</form>
</body>
</html>
result.html
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Music Video Result</title>
</head>
<body>
<h1>Generated Music Video for {{ filename }}</h1>
<!-- Here you would display the result, e.g., a link to download the video -->
</body>
</html>
We will implement the training logic for the Music Video Generator model.
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import numpy as np
import os
from model import MusicVideoGeneratorModel # Assuming the model is defined in model.py
class MusicVideoDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
self.data = self.load_data()
def load_data(self):
data = []
for file in os.listdir(self.data_dir):
if file.endswith('.npy'):
data.append(np.load(os.path.join(self.data_dir, file)))
return data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def get_data_loaders(data_dir, batch_size=32, shuffle=True):
dataset = MusicVideoDataset(data_dir)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
return data_loader
def train_model(model, data_loader, criterion, optimizer, num_epochs=25):
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for inputs in data_loader:
inputs = inputs.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, inputs)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(data_loader.dataset)
print(f'Epoch {epoch}/{num_epochs - 1}, Loss: {epoch_loss:.4f}')
return model
def evaluate_model(model, data_loader, criterion):
model.eval()
running_loss = 0.0
with torch.no_grad():
for inputs in data_loader:
inputs = inputs.to(device)
outputs = model(inputs)
loss = criterion(outputs, inputs)
running_loss += loss.item() * inputs.size(0)
total_loss = running_loss / len(data_loader.dataset)
print(f'Evaluation Loss: {total_loss:.4f}')
return total_loss
def save_model(model, path='music_video_generator.pth'):
torch.save(model.state_dict(), path)
if __name__ == "__main__":
data_dir = 'path/to/data'
batch_size = 32
num_epochs = 25
learning_rate = 0.001
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = MusicVideoGeneratorModel().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
data_loader = get_data_loaders(data_dir, batch_size)
trained_model = train_model(model, data_loader, criterion, optimizer, num_epochs)
evaluate_model(trained_model, data_loader, criterion)
save_model(trained_model)
We will define the architecture of the Music Video Generator model.
import torch
import torch.nn as nn
import torch.nn.functional as F
class MusicVideoGeneratorModel(nn.Module):
def __init__(self):
super(MusicVideoGeneratorModel, self).__init__()
self.audio_conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
self.audio_conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
self.audio_fc = nn.Linear(32 * audio_length, 128) # Assuming audio_length is the length of the audio sequence
self.video_fc1 = nn.Linear(128, 256)
self.video_fc2 = nn.Linear(256, 512)
self.video_fc3 = nn.Linear(512, video_frame_size) # Assuming video_frame_size is the size of the video frame
def forward(self, audio_input):
x = F.relu(self.audio_conv1(audio_input))
x = F.relu(self.audio_conv2(x))
x = x.view(x.size(0), -1) # Flatten the tensor
x = F.relu(self.audio_fc(x))
x = F.relu(self.video_fc1(x))
x = F.relu(self.video_fc2(x))
video_output = torch.sigmoid(self.video_fc3(x)) # Assuming output is in the range [0, 1]
return video_output
# Example usage
# model = MusicVideoGeneratorModel()
# audio_input = torch.randn(batch_size, 1, audio_length) # Example input
# video_output = model(audio_input)
This implementation covers the basic structure needed to complete the project. Adjustments may be needed based on the specific requirements and architecture of the model.
Click here to create a Pull Request with the proposed solution
Files used for this task:
Hey @autopilot based on the readme file can you code the necessary files to finish creating this