DeepSceneSeg / EfficientPS

PyTorch code for training EfficientPS for Panoptic Segmentation
http://panoptic.cs.uni-freiburg.de/
GNU General Public License v3.0
535 stars 75 forks source link

!dets.type().is_cuda() INTERNAL ASSERT FAILED #11

Closed sxfduter closed 3 years ago

sxfduter commented 3 years ago

Traceback (most recent call last): File "train.py", line 148, in main() File "train.py", line 144, in main meta=meta) File "/data/PycharmProjects/EfficientPS/mmdet/apis/train.py", line 112, in train_detector meta=meta) File "/data/PycharmProjects/EfficientPS/mmdet/apis/train.py", line 245, in _non_dist_train runner.run(data_loaders, cfg.workflow, cfg.total_epochs) File "/home/sun/anaconda3/envs/efficientPS_env/lib/python3.7/site-packages/mmcv/runner/runner.py", line 384, in run epoch_runner(data_loaders[i], kwargs) File "/home/sun/anaconda3/envs/efficientPS_env/lib/python3.7/site-packages/mmcv/runner/runner.py", line 283, in train self.model, data_batch, train_mode=True, kwargs) File "/data/PycharmProjects/EfficientPS/mmdet/apis/train.py", line 75, in batch_processor losses = model(data) File "/home/sun/anaconda3/envs/efficientPS_env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in call result = self.forward(*input, *kwargs) File "/home/sun/anaconda3/envs/efficientPS_env/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 150, in forward return self.module(inputs[0], kwargs[0]) File "/home/sun/anaconda3/envs/efficientPS_env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in call result = self.forward(*input, *kwargs) File "/data/PycharmProjects/EfficientPS/mmdet/core/fp16/decorators.py", line 49, in new_func return old_func(args, kwargs) File "/data/PycharmProjects/EfficientPS/mmdet/models/efficientps/base.py", line 147, in forward return self.forward_train(img, img_metas, kwargs) File "/data/PycharmProjects/EfficientPS/mmdet/models/efficientps/efficientPS.py", line 205, in forward_train proposal_list = self.rpn_head.get_bboxes(proposal_inputs) File "/data/PycharmProjects/EfficientPS/mmdet/core/fp16/decorators.py", line 127, in new_func return old_func(args, **kwargs) File "/data/PycharmProjects/EfficientPS/mmdet/models/anchor_heads/anchor_head.py", line 276, in get_bboxes scale_factor, cfg, rescale) File "/data/PycharmProjects/EfficientPS/mmdet/models/anchor_heads/rpn_head.py", line 92, in get_bboxessingle proposals, = nms(proposals, cfg.nms_thr) File "/data/PycharmProjects/EfficientPS/mmdet/ops/nms/nms_wrapper.py", line 56, in nms inds = nms_cuda.nms(dets_th, iou_thr) RuntimeError: !dets.type().is_cuda() INTERNAL ASSERT FAILED at mmdet/ops/nms/src/nms_cpu.cpp:7, please report a bug to PyTorch. dets must be a CPU tensor (nms_cpu_kernel at mmdet/ops/nms/src/nms_cpu.cpp:7) frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits, std::allocator > const&) + 0x6d (0x7f17694182ad in /home/sun/anaconda3/envs/efficientPS_env/lib/python3.7/site-packages/torch/lib/libc10.so) frame #1: at::Tensor nms_cpu_kernel(at::Tensor const&, float) + 0x86f (0x7f16878d9b6f in /data/PycharmProjects/EfficientPS/mmdet/ops/nms/nms_cpu.cpython-37m-x86_64-linux-gnu.so) frame #2: nms(at::Tensor const&, float) + 0xea (0x7f16878c43da in /data/PycharmProjects/EfficientPS/mmdet/ops/nms/nms_cpu.cpython-37m-x86_64-linux-gnu.so) frame #3: + 0x3f3bb (0x7f16878863bb in /data/PycharmProjects/EfficientPS/mmdet/ops/nms/nms_cuda.cpython-37m-x86_64-linux-gnu.so) frame #4: + 0x3bc94 (0x7f1687882c94 in /data/PycharmProjects/EfficientPS/mmdet/ops/nms/nms_cuda.cpython-37m-x86_64-linux-gnu.so)

sxfduter commented 3 years ago

@mohan1914 hello ! Thanks for sharing code. I follow the steps of readme to install the environment and process cityspaces data. When I train, I report an error as shown above. Can you please help me how to resolve it?

update

I reinstalled the environment again, and there was no such problem.

mohan1914 commented 3 years ago

It's great that it worked for you. Can I close the issue now?