DefTruth / lite.ai.toolkit

🛠 A lite C++ toolkit of awesome AI models, support ONNXRuntime, MNN, TNN, NCNN and TensorRT.
https://github.com/DefTruth/lite.ai.toolkit
GNU General Public License v3.0
3.62k stars 692 forks source link

yolov5 代码问题请教 #13

Closed rrjia closed 2 years ago

rrjia commented 3 years ago

yolov5是一个基于anchor的算法,再前向推理的过程中应该涉及anchor的计算,但是在代码中没有看到andhor的任何信息,请问是怎么处理的?

DefTruth commented 3 years ago

回复得稍晚~白天在使劲卷~🙃 是这样的,你看的很仔细,赞👍🏻。这是由于yolov5的代码中,已经把descale和anchor匹配用pytorch实现了(Detect模块)。在转出成onnx时,这部分被整合在模型里一块转出来了。下面是一段我关于yolov5的源码注释,你可以参考下。 稍微有点长 ~

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super(Detect, self).__init__()
        self.nc = nc  # number of classes nc=80
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers 预测层的数量 每层负责预测不同尺度的框
        self.na = len(anchors[0]) // 2  # number of anchors 每个点上的anchor数量
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)  # (nl,na,2) 2表示宽高尺度
        # register_buffer: https://blog.csdn.net/weixin_38145317/article/details/104917218
        # 注册入缓冲区 不会被梯度更新 被视为常量 在forward中可以直接使用
        # self.anchors和self.anchor_grid
        self.register_buffer('anchors', a)  # shape(nl,na,2)
        self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv (bs,na*no,ny,nx)
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        # x = x.copy()  # for profiling
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv (bs,na*no,ny,nx)
            bs, _, ny, nx = x[i].shape
            # x(bs,255,20,20) to x(bs,3,20,20,85=80+5) (bs,na,ny,nx,no=nc+5=4+1+nc)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            # 关于self.grid的理解:
            # 一般情况下在training模式下是用不到grid的,因此按理说,grid[i]应该一直是torch.zeros(1)
            # 所以原来这个self.grid[i].shape[2:4] != x[i].shape[2:4]判断必然为True;然而需要注意的
            # 是,在train.py中有一段测试逻辑test.test(...),这里边调用了model.eval(),而这个方法会把
            # 父类nn.Module的属性self.training设置为False,于是在eval模式下的forward会跑入以下这段
            # 逻辑,从修改了self.grid,所以在我们冻结权重时会发现print出来的grid[i].shape不是(1,);
            # 问题在于修改后的self.grid所对应的图片尺寸以及网格尺寸,不一定就是我们冻结权重时想要的,
            # 所以self.grid[i].shape[2:4] != x[i].shape[2:4]可能为True也可能为False,这就影响了
            # jit的Tracing(TracerWarning:)。所以解决问题的方法就是,去掉这个判断,始终根据目前的输入维度构造新的grid
            # 从逻辑上看,这并没有改变yolov5最终的推理结果
            if not self.training:  # inference
                # if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
                #     self.grid[i] = self._make_grid(nx, ny).to(x[i].device)

                # update at 20210515
                self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
                # update at 20210515

                y = x[i].sigmoid()  # (bs,na,ny,nx,no=nc+5=4+1+nc)
                # 应该是将预测的偏移量也做了归一化(0.,1.) 于是xywh+conf+cls_prob都是(0.,1.)
                # 或者说 按照下面的反算逻辑 应该预测的是xy相对于grid[i]上锚点中心的偏移 这种偏移
                # 被限制在(0.,1.)之间;比如grid[i]在(ii,jj)位置上的值2值即为(ii,jj),代表的是
                # 锚点中心的坐标,预测的是相对于(ii,jj)的偏移量 在(0.,1.)之间

                # 另外在转onnx时 计算GFLOPS出现异常 AttributeError: 'Detect' object has no attribute 'inplace'
                # 估计是训练时保存的模型没有self.inplace这个属性,但是代码后来又添加了这段逻辑 注释掉self.inplace
                # 之后就可以计算GFLOPS了
                # update at 20210515
                xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy (bs,na,ny,nx,2)
                wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2)  # wh (bs,na,ny,nx,2)
                y = torch.cat((xy, wh, y[..., 4:]), -1) # (bs,na,ny,nx,2+2+1+nc=xy+wh+conf+cls_prob)
                # update at 20210515

                # 在转换成onnx时,默认self.inplance=False
                # if self.inplace:
                #     y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                #     y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                # else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                #     # 计算预测的中心点 并反算到输入图像的尺寸坐标上
                #     xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                #     wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2)  # wh
                #     y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))  # y (bs,na*ny*nx,no=2+2+1+nc=xy+wh+conf+cls_prob)

        return x if self.training else (torch.cat(z, 1), x)
        # torch.cat(z, 1) (bs,na*ny*nx*nl,no=2+2+1+nc=xy+wh+conf+cls_prob)

    @staticmethod
    def _make_grid(nx=20, ny=20):
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()

class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)
        # logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # logger.info('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        initialize_weights(self)
        self.info()
        logger.info('')

    def forward(self, x, augment=False, profile=False):
        if augment:
            return self.forward_augment(x)  # augmented inference, None
        else:
            return self.forward_once(x, profile)  # single-scale inference, train

    def forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self.forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        return torch.cat(y, 1), None  # augmented inference, train

    def forward_once(self, x, profile=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                # 注释:当m是Detect时,f=[17, 20, 23],此时为最后的检测层;x更新为从[17, 20, 23]层获取的特征 此时有3个
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers

            if profile:
                o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPS
                t = time_synchronized()
                for _ in range(10):
                    _ = m(x)
                dt.append((time_synchronized() - t) * 100)
                if m == self.model[0]:
                    logger.info(f"{'time (ms)':>10s} {'GFLOPS':>10s} {'params':>10s}  {'module'}")
                logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')

            # 注释:在最后的Detect层时,输入的x为3个张量,输出为(torch.cat(z, 1), x)
            # 所以展开后是4个输出 第一个是预测结果 其余的是中间层的特征;但是直接用pth推理的
            # 输出长度是2;而转成onnx后,输出是4个结果。估计是onnx将结果展开了。如果你只在onnx
            # 导出时指定一个输出名称output_names=["pred"],则另外3个的输出的名称会被自动指定,
            # 如: %pred, %778, %876, %974
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output

        if profile:
            logger.info('%.1fms total' % sum(dt))
        return x

    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

另外也比较推荐你看一下这份我关于yolov5转c++工程的记录文档 ort_yolov5.zh.md 希望能解决你的疑惑

rrjia commented 3 years ago

感谢楼主卷到这么晚还回复我,昨天看yolov5源码没注意到

if not self.training:  # inference

把上面的not忽视了,认为anchor乘法没有在网络内部处理过,感觉这么详细的结合源码的解答