Changelog
### 8.1.3
```
-------------
Released 2022-04-28
- Use verbose form of ``typing.Callable`` for ``command`` and
``group``. :issue:`2255`
- Show error when attempting to create an option with
``multiple=True, is_flag=True``. Use ``count`` instead.
:issue:`2246`
```
### 8.1.2
```
-------------
Released 2022-03-31
- Fix error message for readable path check that was mixed up with the
executable check. :pr:`2236`
- Restore parameter order for ``Path``, placing the ``executable``
parameter at the end. It is recommended to use keyword arguments
instead of positional arguments. :issue:`2235`
```
### 8.1.1
```
-------------
Released 2022-03-30
- Fix an issue with decorator typing that caused type checking to
report that a command was not callable. :issue:`2227`
```
### 8.1.0
```
-------------
Released 2022-03-28
- Drop support for Python 3.6. :pr:`2129`
- Remove previously deprecated code. :pr:`2130`
- ``Group.resultcallback`` is renamed to ``result_callback``.
- ``autocompletion`` parameter to ``Command`` is renamed to
``shell_complete``.
- ``get_terminal_size`` is removed, use
``shutil.get_terminal_size`` instead.
- ``get_os_args`` is removed, use ``sys.argv[1:]`` instead.
- Rely on :pep:`538` and :pep:`540` to handle selecting UTF-8 encoding
instead of ASCII. Click's locale encoding detection is removed.
:issue:`2198`
- Single options boolean flags with ``show_default=True`` only show
the default if it is ``True``. :issue:`1971`
- The ``command`` and ``group`` decorators can be applied with or
without parentheses. :issue:`1359`
- The ``Path`` type can check whether the target is executable.
:issue:`1961`
- ``Command.show_default`` overrides ``Context.show_default``, instead
of the other way around. :issue:`1963`
- Parameter decorators and ``group`` handles ``cls=None`` the same as
not passing ``cls``. ``option`` handles ``help=None`` the same as
not passing ``help``. :issue:`1959`
- A flag option with ``required=True`` requires that the flag is
passed instead of choosing the implicit default value. :issue:`1978`
- Indentation in help text passed to ``Option`` and ``Command`` is
cleaned the same as using the ``option`` and ``command``
decorators does. A command's ``epilog`` and ``short_help`` are also
processed. :issue:`1985`
- Store unprocessed ``Command.help``, ``epilog`` and ``short_help``
strings. Processing is only done when formatting help text for
output. :issue:`2149`
- Allow empty str input for ``prompt()`` when
``confirmation_prompt=True`` and ``default=""``. :issue:`2157`
- Windows glob pattern expansion doesn't fail if a value is an invalid
pattern. :issue:`2195`
- It's possible to pass a list of ``params`` to ``command``. Any
params defined with decorators are appended to the passed params.
:issue:`2131`.
- ``command`` decorator is annotated as returning the correct type if
a ``cls`` argument is used. :issue:`2211`
- A ``Group`` with ``invoke_without_command=True`` and ``chain=False``
will invoke its result callback with the group function's return
value. :issue:`2124`
- ``to_info_dict`` will not fail if a ``ParamType`` doesn't define a
``name``. :issue:`2168`
- Shell completion prioritizes option values with option prefixes over
new options. :issue:`2040`
- Options that get an environment variable value using
``autoenvvar_prefix`` treat an empty value as ``None``, consistent
with a direct ``envvar``. :issue:`2146`
```
### 8.0.4
```
-------------
Released 2022-02-18
- ``open_file`` recognizes ``Path("-")`` as a standard stream, the
same as the string ``"-"``. :issue:`2106`
- The ``option`` and ``argument`` decorators preserve the type
annotation of the decorated function. :pr:`2155`
- A callable default value can customize its help text by overriding
``__str__`` instead of always showing ``(dynamic)``. :issue:`2099`
- Fix a typo in the Bash completion script that affected file and
directory completion. If this script was generated by a previous
version, it should be regenerated. :issue:`2163`
- Fix typing for ``echo`` and ``secho`` file argument.
:issue:`2174, 2185`
```
### 8.0.3
```
-------------
Released 2021-10-10
- Fix issue with ``Path(resolve_path=True)`` type creating invalid
paths. :issue:`2088`
- Importing ``readline`` does not cause the ``confirm()`` prompt to
disappear when pressing backspace. :issue:`2092`
- Any default values injected by ``invoke()`` are cast to the
corresponding parameter's type. :issue:`2089, 2090`
```
### 8.0.2
```
-------------
Released 2021-10-08
- ``is_bool_flag`` is not set to ``True`` if ``is_flag`` is ``False``.
:issue:`1925`
- Bash version detection is locale independent. :issue:`1940`
- Empty ``default`` value is not shown for ``multiple=True``.
:issue:`1969`
- Fix shell completion for arguments that start with a forward slash
such as absolute file paths. :issue:`1929`
- ``Path`` type with ``resolve_path=True`` resolves relative symlinks
to be relative to the containing directory. :issue:`1921`
- Completion does not skip Python's resource cleanup when exiting,
avoiding some unexpected warning output. :issue:`1738, 2017`
- Fix type annotation for ``type`` argument in ``prompt`` function.
:issue:`2062`
- Fix overline and italic styles, which were incorrectly added when
adding underline. :pr:`2058`
- An option with ``count=True`` will not show "[x>=0]" in help text.
:issue:`2072`
- Default values are not cast to the parameter type twice during
processing. :issue:`2085`
- Options with ``multiple`` and ``flag_value`` use the flag value
instead of leaving an internal placeholder. :issue:`2001`
```
### 8.0.1
```
-------------
Released 2021-05-19
- Mark top-level names as exported so type checking understand imports
in user projects. :issue:`1879`
- Annotate ``Context.obj`` as ``Any`` so type checking allows all
operations on the arbitrary object. :issue:`1885`
- Fix some types that weren't available in Python 3.6.0. :issue:`1882`
- Fix type checking for iterating over ``ProgressBar`` object.
:issue:`1892`
- The ``importlib_metadata`` backport package is installed on Python <
3.8. :issue:`1889`
- Arguments with ``nargs=-1`` only use env var value if no command
line values are given. :issue:`1903`
- Flag options guess their type from ``flag_value`` if given, like
regular options do from ``default``. :issue:`1886`
- Added documentation that custom parameter types may be passed
already valid values in addition to strings. :issue:`1898`
- Resolving commands returns the name that was given, not
``command.name``, fixing an unintended change to help text and
``default_map`` lookups. When using patterns like ``AliasedGroup``,
override ``resolve_command`` to change the name that is returned if
needed. :issue:`1895`
- If a default value is invalid, it does not prevent showing help
text. :issue:`1889`
- Pass ``windows_expand_args=False`` when calling the main command to
disable pattern expansion on Windows. There is no way to escape
patterns in CMD, so if the program needs to pass them on as-is then
expansion must be disabled. :issue:`1901`
```
### 8.0.0
```
-------------
Released 2021-05-11
- Drop support for Python 2 and 3.5.
- Colorama is always installed on Windows in order to provide style
and color support. :pr:`1784`
- Adds a repr to Command, showing the command name for friendlier
debugging. :issue:`1267`, :pr:`1295`
- Add support for distinguishing the source of a command line
parameter. :issue:`1264`, :pr:`1329`
- Add an optional parameter to ``ProgressBar.update`` to set the
``current_item``. :issue:`1226`, :pr:`1332`
- ``version_option`` uses ``importlib.metadata`` (or the
``importlib_metadata`` backport) instead of ``pkg_resources``. The
version is detected based on the package name, not the entry point
name. The Python package name must match the installed package
name, or be passed with ``package_name=``. :issue:`1582`
- If validation fails for a prompt with ``hide_input=True``, the value
is not shown in the error message. :issue:`1460`
- An ``IntRange`` or ``FloatRange`` option shows the accepted range in
its help text. :issue:`1525`, :pr:`1303`
- ``IntRange`` and ``FloatRange`` bounds can be open (``<``) instead
of closed (``<=``) by setting ``min_open`` and ``max_open``. Error
messages have changed to reflect this. :issue:`1100`
- An option defined with duplicate flag names (``"--foo/--foo"``)
raises a ``ValueError``. :issue:`1465`
- ``echo()`` will not fail when using pytest's ``capsys`` fixture on
Windows. :issue:`1590`
- Resolving commands returns the canonical command name instead of the
matched name. This makes behavior such as help text and
``Context.invoked_subcommand`` consistent when using patterns like
``AliasedGroup``. :issue:`1422`
- The ``BOOL`` type accepts the values "on" and "off". :issue:`1629`
- A ``Group`` with ``invoke_without_command=True`` will always invoke
its result callback. :issue:`1178`
- ``nargs == -1`` and ``nargs > 1`` is parsed and validated for
values from environment variables and defaults. :issue:`729`
- Detect the program name when executing a module or package with
``python -m name``. :issue:`1603`
- Include required parent arguments in help synopsis of subcommands.
:issue:`1475`
- Help for boolean flags with ``show_default=True`` shows the flag
name instead of ``True`` or ``False``. :issue:`1538`
- Non-string objects passed to ``style()`` and ``secho()`` will be
converted to string. :pr:`1146`
- ``edit(require_save=True)`` will detect saves for editors that exit
very fast on filesystems with 1 second resolution. :pr:`1050`
- New class attributes make it easier to use custom core objects
throughout an entire application. :pr:`938`
- ``Command.context_class`` controls the context created when
running the command.
- ``Context.invoke`` creates new contexts of the same type, so a
custom type will persist to invoked subcommands.
- ``Context.formatter_class`` controls the formatter used to
generate help and usage.
- ``Group.command_class`` changes the default type for
subcommands with ``group.command()``.
- ``Group.group_class`` changes the default type for subgroups
with ``group.group()``. Setting it to ``type`` will create
subgroups of the same type as the group itself.
- Core objects use ``super()`` consistently for better support of
subclassing.
- Use ``Context.with_resource()`` to manage resources that would
normally be used in a ``with`` statement, allowing them to be used
across subcommands and callbacks, then cleaned up when the context
ends. :pr:`1191`
- The result object returned by the test runner's ``invoke()`` method
has a ``return_value`` attribute with the value returned by the
invoked command. :pr:`1312`
- Required arguments with the ``Choice`` type show the choices in
curly braces to indicate that one is required (``{a|b|c}``).
:issue:`1272`
- If only a name is passed to ``option()``, Click suggests renaming it
to ``--name``. :pr:`1355`
- A context's ``show_default`` parameter defaults to the value from
the parent context. :issue:`1565`
- ``click.style()`` can output 256 and RGB color codes. Most modern
terminals support these codes. :pr:`1429`
- When using ``CliRunner.invoke()``, the replaced ``stdin`` file has
``name`` and ``mode`` attributes. This lets ``File`` options with
the ``-`` value match non-testing behavior. :issue:`1064`
- When creating a ``Group``, allow passing a list of commands instead
of a dict. :issue:`1339`
- When a long option name isn't valid, use ``difflib`` to make better
suggestions for possible corrections. :issue:`1446`
- Core objects have a ``to_info_dict()`` method. This gathers
information about the object's structure that could be useful for a
tool generating user-facing documentation. To get the structure of
an entire CLI, use ``Context(cli).to_info_dict()``. :issue:`461`
- Redesign the shell completion system. :issue:`1484`, :pr:`1622`
- Support Bash >= 4.4, Zsh, and Fish, with the ability for
extensions to add support for other shells.
- Allow commands, groups, parameters, and types to override their
completions suggestions.
- Groups complete the names commands were registered with, which
can differ from the name they were created with.
- The ``autocompletion`` parameter for options and arguments is
renamed to ``shell_complete``. The function must take
``ctx, param, incomplete``, must do matching rather than return
all values, and must return a list of strings or a list of
``CompletionItem``. The old name and behavior is deprecated and
will be removed in 8.1.
- The env var values used to start completion have changed order.
The shell now comes first, such as ``{shell}_source`` rather
than ``source_{shell}``, and is always required.
- Completion correctly parses command line strings with incomplete
quoting or escape sequences. :issue:`1708`
- Extra context settings (``obj=...``, etc.) are passed on to the
completion system. :issue:`942`
- Include ``--help`` option in completion. :pr:`1504`
- ``ParameterSource`` is an ``enum.Enum`` subclass. :issue:`1530`
- Boolean and UUID types strip surrounding space before converting.
:issue:`1605`
- Adjusted error message from parameter type validation to be more
consistent. Quotes are used to distinguish the invalid value.
:issue:`1605`
- The default value for a parameter with ``nargs`` > 1 and
``multiple=True`` must be a list of tuples. :issue:`1649`
- When getting the value for a parameter, the default is tried in the
same section as other sources to ensure consistent processing.
:issue:`1649`
- All parameter types accept a value that is already the correct type.
:issue:`1649`
- For shell completion, an argument is considered incomplete if its
value did not come from the command line args. :issue:`1649`
- Added ``ParameterSource.PROMPT`` to track parameter values that were
prompted for. :issue:`1649`
- Options with ``nargs`` > 1 no longer raise an error if a default is
not given. Parameters with ``nargs`` > 1 default to ``None``, and
parameters with ``multiple=True`` or ``nargs=-1`` default to an
empty tuple. :issue:`472`
- Handle empty env vars as though the option were not passed. This
extends the change introduced in 7.1 to be consistent in more cases.
:issue:`1285`
- ``Parameter.get_default()`` checks ``Context.default_map`` to
handle overrides consistently in help text, ``invoke()``, and
prompts. :issue:`1548`
- Add ``prompt_required`` param to ``Option``. When set to ``False``,
the user will only be prompted for an input if no value was passed.
:issue:`736`
- Providing the value to an option can be made optional through
``is_flag=False``, and the value can instead be prompted for or
passed in as a default value.
:issue:`549, 736, 764, 921, 1015, 1618`
- Fix formatting when ``Command.options_metavar`` is empty. :pr:`1551`
- Revert adding space between option help text that wraps.
:issue:`1831`
- The default value passed to ``prompt`` will be cast to the correct
type like an input value would be. :pr:`1517`
- Automatically generated short help messages will stop at the first
ending of a phrase or double linebreak. :issue:`1082`
- Skip progress bar render steps for efficiency with very fast
iterators by setting ``update_min_steps``. :issue:`676`
- Respect ``case_sensitive=False`` when doing shell completion for
``Choice`` :issue:`1692`
- Use ``mkstemp()`` instead of ``mktemp()`` in pager implementation.
:issue:`1752`
- If ``Option.show_default`` is a string, it is displayed even if
``default`` is ``None``. :issue:`1732`
- ``click.get_terminal_size()`` is deprecated and will be removed in
8.1. Use :func:`shutil.get_terminal_size` instead. :issue:`1736`
- Control the location of the temporary directory created by
``CLIRunner.isolated_filesystem`` by passing ``temp_dir``. A custom
directory will not be removed automatically. :issue:`395`
- ``click.confirm()`` will prompt until input is given if called with
``default=None``. :issue:`1381`
- Option prompts validate the value with the option's callback in
addition to its type. :issue:`457`
- ``confirmation_prompt`` can be set to a custom string. :issue:`723`
- Allow styled output in Jupyter on Windows. :issue:`1271`
- ``style()`` supports the ``strikethrough``, ``italic``, and
``overline`` styles. :issue:`805, 1821`
- Multiline marker is removed from short help text. :issue:`1597`
- Restore progress bar behavior of echoing only the label if the file
is not a TTY. :issue:`1138`
- Progress bar output is shown even if execution time is less than 0.5
seconds. :issue:`1648`
- Progress bar ``item_show_func`` shows the current item, not the
previous item. :issue:`1353`
- The ``Path`` param type can be passed ``path_type=pathlib.Path`` to
return a path object instead of a string. :issue:`405`
- ``TypeError`` is raised when parameter with ``multiple=True`` or
``nargs > 1`` has non-iterable default. :issue:`1749`
- Add a ``pass_meta_key`` decorator for passing a key from
``Context.meta``. This is useful for extensions using ``meta`` to
store information. :issue:`1739`
- ``Path`` ``resolve_path`` resolves symlinks on Windows Python < 3.8.
:issue:`1813`
- Command deprecation notice appears at the start of the help text, as
well as in the short help. The notice is not in all caps.
:issue:`1791`
- When taking arguments from ``sys.argv`` on Windows, glob patterns,
user dir, and env vars are expanded. :issue:`1096`
- Marked messages shown by the CLI with ``gettext()`` to allow
applications to translate Click's built-in strings. :issue:`303`
- Writing invalid characters to ``stderr`` when using the test runner
does not raise a ``UnicodeEncodeError``. :issue:`848`
- Fix an issue where ``readline`` would clear the entire ``prompt()``
line instead of only the input when pressing backspace. :issue:`665`
- Add all kwargs passed to ``Context.invoke()`` to ``ctx.params``.
Fixes an inconsistency when nesting ``Context.forward()`` calls.
:issue:`1568`
- The ``MultiCommand.resultcallback`` decorator is renamed to
``result_callback``. The old name is deprecated. :issue:`1160`
- Fix issues with ``CliRunner`` output when using ``echo_stdin=True``.
:issue:`1101`
- Fix a bug of ``click.utils.make_default_short_help`` for which the
returned string could be as long as ``max_width + 3``. :issue:`1849`
- When defining a parameter, ``default`` is validated with
``multiple`` and ``nargs``. More validation is done for values being
processed as well. :issue:`1806`
- ``HelpFormatter.write_text`` uses the full line width when wrapping
text. :issue:`1871`
```
### 7.1.2
```
-------------
Released 2020-04-27
- Revert applying shell quoting to commands for ``echo_with_pager``
and ``edit``. This was intended to allows spaces in commands, but
caused issues if the string was actually a command and arguments, or
on Windows. Instead, the string must be quoted manually as it should
appear on the command line. :issue:`1514`
```
### 7.1.1
```
-------------
Released 2020-03-09
- Fix ``ClickException`` output going to stdout instead of stderr.
:issue:`1495`
```
### 7.1
```
-----------
Released 2020-03-09
- Fix PyPI package name, "click" is lowercase again.
- Fix link in ``unicode_literals`` error message. :pr:`1151`
- Add support for colored output on UNIX Jupyter notebooks.
:issue:`1185`
- Operations that strip ANSI controls will strip the cursor hide/show
sequences. :issue:`1216`
- Remove unused compat shim for ``bytes``. :pr:`1195`
- Expand testing around termui, especially getchar on Windows.
:issue:`1116`
- Fix output on Windows Python 2.7 built with MSVC 14. :pr:`1342`
- Fix ``OSError`` when running in MSYS2. :issue:`1338`
- Fix ``OSError`` when redirecting to ``NUL`` stream on Windows.
:issue:`1065`
- Fix memory leak when parsing Unicode arguments on Windows.
:issue:`1136`
- Fix error in new AppEngine environments. :issue:`1462`
- Always return one of the passed choices for ``click.Choice``
:issue:`1277`, :pr:`1318`
- Add ``no_args_is_help`` option to ``click.Command``, defaults to
False :pr:`1167`
- Add ``show_default`` parameter to ``Context`` to enable showing
defaults globally. :issue:`1018`
- Handle ``env MYPATH=''`` as though the option were not passed.
:issue:`1196`
- It is once again possible to call ``next(bar)`` on an active
progress bar instance. :issue:`1125`
- ``open_file`` with ``atomic=True`` retains permissions of existing
files and respects the current umask for new files. :issue:`1376`
- When using the test ``CliRunner`` with ``mix_stderr=False``, if
``result.stderr`` is empty it will not raise a ``ValueError``.
:issue:`1193`
- Remove the unused ``mix_stderr`` parameter from
``CliRunner.invoke``. :issue:`1435`
- Fix ``TypeError`` raised when using bool flags and specifying
``type=bool``. :issue:`1287`
- Newlines in option help text are replaced with spaces before
re-wrapping to avoid uneven line breaks. :issue:`834`
- ``MissingParameter`` exceptions are printable in the Python
interpreter. :issue:`1139`
- Fix how default values for file-type options are shown during
prompts. :issue:`914`
- Fix environment variable automatic generation for commands
containing ``-``. :issue:`1253`
- Option help text replaces newlines with spaces when rewrapping, but
preserves paragraph breaks, fixing multiline formatting.
:issue:`834, 1066, 1397`
- Option help text that is wrapped adds an extra newline at the end to
distinguish it from the next option. :issue:`1075`
- Consider ``sensible-editor`` when determining the editor to use for
``click.edit()``. :pr:`1469`
- Arguments to system calls such as the executable path passed to
``click.edit`` can contains spaces. :pr:`1470`
- Add ZSH completion autoloading and error handling. :issue:`1348`
- Add a repr to ``Command``, ``Group``, ``Option``, and ``Argument``,
showing the name for friendlier debugging. :issue:`1267`
- Completion doesn't consider option names if a value starts with
``-`` after the ``--`` separator. :issue:`1247`
- ZSH completion escapes special characters in values. :pr:`1418`
- Add completion support for Fish shell. :pr:`1423`
- Decoding bytes option values falls back to UTF-8 in more cases.
:pr:`1468`
- Make the warning about old 2-arg parameter callbacks a deprecation
warning, to be removed in 8.0. This has been a warning since Click
2.0. :pr:`1492`
- Adjust error messages to standardize the types of quotes used so
they match error messages from Python.
```
Links
- PyPI: https://pypi.org/project/click
- Changelog: https://pyup.io/changelogs/click/
- Homepage: https://palletsprojects.com/p/click/
Changelog
### 1.24.1
```
discovered after the 1.24.0 release. The Python versions supported by
this release are 3.8-3.11.
Contributors
A total of 12 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.
- Andrew Nelson
- Ben Greiner +
- Charles Harris
- Clément Robert
- Matteo Raso
- Matti Picus
- Melissa Weber Mendonça
- Miles Cranmer
- Ralf Gommers
- Rohit Goswami
- Sayed Adel
- Sebastian Berg
Pull requests merged
A total of 18 pull requests were merged for this release.
- [22820](https://github.com/numpy/numpy/pull/22820): BLD: add workaround in setup.py for newer setuptools
- [22830](https://github.com/numpy/numpy/pull/22830): BLD: CIRRUS_TAG redux
- [22831](https://github.com/numpy/numpy/pull/22831): DOC: fix a couple typos in 1.23 notes
- [22832](https://github.com/numpy/numpy/pull/22832): BUG: Fix refcounting errors found using pytest-leaks
- [22834](https://github.com/numpy/numpy/pull/22834): BUG, SIMD: Fix invalid value encountered in several ufuncs
- [22837](https://github.com/numpy/numpy/pull/22837): TST: ignore more np.distutils.log imports
- [22839](https://github.com/numpy/numpy/pull/22839): BUG: Do not use getdata() in np.ma.masked_invalid
- [22847](https://github.com/numpy/numpy/pull/22847): BUG: Ensure correct behavior for rows ending in delimiter in\...
- [22848](https://github.com/numpy/numpy/pull/22848): BUG, SIMD: Fix the bitmask of the boolean comparison
- [22857](https://github.com/numpy/numpy/pull/22857): BLD: Help raspian arm + clang 13 about \_\_builtin_mul_overflow
- [22858](https://github.com/numpy/numpy/pull/22858): API: Ensure a full mask is returned for masked_invalid
- [22866](https://github.com/numpy/numpy/pull/22866): BUG: Polynomials now copy properly (#22669)
- [22867](https://github.com/numpy/numpy/pull/22867): BUG, SIMD: Fix memory overlap in ufunc comparison loops
- [22868](https://github.com/numpy/numpy/pull/22868): BUG: Fortify string casts against floating point warnings
- [22875](https://github.com/numpy/numpy/pull/22875): TST: Ignore nan-warnings in randomized out tests
- [22883](https://github.com/numpy/numpy/pull/22883): MAINT: restore npymath implementations needed for freebsd
- [22884](https://github.com/numpy/numpy/pull/22884): BUG: Fix integer overflow in in1d for mixed integer dtypes #22877
- [22887](https://github.com/numpy/numpy/pull/22887): BUG: Use whole file for encoding checks with `charset_normalizer`.
Checksums
MD5
9e543db90493d6a00939bd54c2012085 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
4ebd7af622bf617b4876087e500d7586 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
0c0a3012b438bb455a6c2fadfb1be76a numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0bddb527345449df624d3cb9aa0e1b75 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b246beb773689d97307f7b4c2970f061 numpy-1.24.1-cp310-cp310-win32.whl
1f3823999fce821a28dee10ac6fdd721 numpy-1.24.1-cp310-cp310-win_amd64.whl
8eedcacd6b096a568e4cb393d43b3ae5 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
50bddb05acd54b4396100a70522496dd numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
2a76bd9da8a78b44eb816bd70fa3aee3 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9e86658a414272f9749bde39344f9b76 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
915dfb89054e1631574a22a9b53a2b25 numpy-1.24.1-cp311-cp311-win32.whl
ab7caa2c6c20e1fab977e1a94dede976 numpy-1.24.1-cp311-cp311-win_amd64.whl
8246de961f813f5aad89bca3d12f81e7 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
58366b1a559baa0547ce976e416ed76d numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
a96f29bf106a64f82b9ba412635727d1 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c32a43bdb85121614ab3e99929e33c7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b20949ed21683ad7c9cbdf9ebb2439 numpy-1.24.1-cp38-cp38-win32.whl
9e9f1577f874286a8bdff8dc5551eb9f numpy-1.24.1-cp38-cp38-win_amd64.whl
4383c1137f0287df67c364fbdba2bc72 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
987f22c49b2be084b5d72f88f347d31e numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
848ad020bba075ed8f19072c64dcd153 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
864b159e644848bc25f881907dbcf062 numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
db339ec0b2693cac2d7cf9ca75c334b1 numpy-1.24.1-cp39-cp39-win32.whl
fec91d4c85066ad8a93816d71b627701 numpy-1.24.1-cp39-cp39-win_amd64.whl
619af9cd4f33b668822ae2350f446a15 numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
46f19b4b147f8836c2bd34262fabfffa numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e85b245c57a10891b3025579bf0cf298 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
dd3aaeeada8e95cc2edf9a3a4aa8b5af numpy-1.24.1.tar.gz
SHA256
179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7 numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2 numpy-1.24.1-cp310-cp310-win32.whl
b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2 numpy-1.24.1-cp310-cp310-win_amd64.whl
7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032 numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36 numpy-1.24.1-cp311-cp311-win32.whl
de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51 numpy-1.24.1-cp311-cp311-win_amd64.whl
b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954 numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1 numpy-1.24.1-cp38-cp38-win32.whl
6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c numpy-1.24.1-cp38-cp38-win_amd64.whl
28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7 numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f numpy-1.24.1-cp39-cp39-win32.whl
ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e numpy-1.24.1-cp39-cp39-win_amd64.whl
ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086 numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2 numpy-1.24.1.tar.gz
```
### 1.24
```
The NumPy 1.24.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There are also a large number of new and
expired deprecations due to changes in promotion and cleanups. This
might be called a deprecation release. Highlights are
- Many new deprecations, check them out.
- Many expired deprecations,
- New F2PY features and fixes.
- New \"dtype\" and \"casting\" keywords for stacking functions.
See below for the details,
Deprecations
Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose
The `numpy.fastCopyAndTranspose` function has been deprecated. Use the
corresponding copy and transpose methods directly:
arr.T.copy()
The underlying C function `PyArray_CopyAndTranspose` has also been
deprecated from the NumPy C-API.
([gh-22313](https://github.com/numpy/numpy/pull/22313))
Conversion of out-of-bound Python integers
Attempting a conversion from a Python integer to a NumPy value will now
always check whether the result can be represented by NumPy. This means
the following examples will fail in the future and give a
`DeprecationWarning` now:
np.uint8(-1)
np.array([3000], dtype=np.int8)
Many of these did succeed before. Such code was mainly useful for
unsigned integers with negative values such as `np.uint8(-1)` giving
`np.iinfo(np.uint8).max`.
Note that conversion between NumPy integers is unaffected, so that
`np.array(-1).astype(np.uint8)` continues to work and use C integer
overflow logic.
([gh-22393](https://github.com/numpy/numpy/pull/22393))
Deprecate `msort`
The `numpy.msort` function is deprecated. Use `np.sort(a, axis=0)`
instead.
([gh-22456](https://github.com/numpy/numpy/pull/22456))
`np.str0` and similar are now deprecated
The scalar type aliases ending in a 0 bit size: `np.object0`, `np.str0`,
`np.bytes0`, `np.void0`, `np.int0`, `np.uint0` as well as `np.bool8` are
now deprecated and will eventually be removed.
([gh-22607](https://github.com/numpy/numpy/pull/22607))
Expired deprecations
- The `normed` keyword argument has been removed from
[np.histogram]{.title-ref}, [np.histogram2d]{.title-ref}, and
[np.histogramdd]{.title-ref}. Use `density` instead. If `normed` was
passed by position, `density` is now used.
([gh-21645](https://github.com/numpy/numpy/pull/21645))
- Ragged array creation will now always raise a `ValueError` unless
`dtype=object` is passed. This includes very deeply nested
sequences.
([gh-22004](https://github.com/numpy/numpy/pull/22004))
- Support for Visual Studio 2015 and earlier has been removed.
- Support for the Windows Interix POSIX interop layer has been
removed.
([gh-22139](https://github.com/numpy/numpy/pull/22139))
- Support for cygwin \< 3.3 has been removed.
([gh-22159](https://github.com/numpy/numpy/pull/22159))
- The mini() method of `np.ma.MaskedArray` has been removed. Use
either `np.ma.MaskedArray.min()` or `np.ma.minimum.reduce()`.
- The single-argument form of `np.ma.minimum` and `np.ma.maximum` has
been removed. Use `np.ma.minimum.reduce()` or
`np.ma.maximum.reduce()` instead.
([gh-22228](https://github.com/numpy/numpy/pull/22228))
- Passing dtype instances other than the canonical (mainly native
byte-order) ones to `dtype=` or `signature=` in ufuncs will now
raise a `TypeError`. We recommend passing the strings `"int8"` or
scalar types `np.int8` since the byte-order, datetime/timedelta
unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.)
([gh-22540](https://github.com/numpy/numpy/pull/22540))
- The `dtype=` argument to comparison ufuncs is now applied correctly.
That means that only `bool` and `object` are valid values and
`dtype=object` is enforced.
([gh-22541](https://github.com/numpy/numpy/pull/22541))
- The deprecation for the aliases `np.object`, `np.bool`, `np.float`,
`np.complex`, `np.str`, and `np.int` is expired (introduces NumPy
1.20). Some of these will now give a FutureWarning in addition to
raising an error since they will be mapped to the NumPy scalars in
the future.
([gh-22607](https://github.com/numpy/numpy/pull/22607))
Compatibility notes
`array.fill(scalar)` may behave slightly different
`numpy.ndarray.fill` may in some cases behave slightly different now due
to the fact that the logic is aligned with item assignment:
arr = np.array([1]) with any dtype/value
arr.fill(scalar)
is now identical to:
arr[0] = scalar
Previously casting may have produced slightly different answers when
using values that could not be represented in the target `dtype` or when
the target had `object` dtype.
([gh-20924](https://github.com/numpy/numpy/pull/20924))
Subarray to object cast now copies
Casting a dtype that includes a subarray to an object will now ensure a
copy of the subarray. Previously an unsafe view was returned:
arr = np.ones(3, dtype=[("f", "i", 3)])
subarray_fields = arr.astype(object)[0]
subarray = subarray_fields[0] "f" field
np.may_share_memory(subarray, arr)
Is now always false. While previously it was true for the specific cast.
([gh-21925](https://github.com/numpy/numpy/pull/21925))
Returned arrays respect uniqueness of dtype kwarg objects
When the `dtype` keyword argument is used with
:py`np.array()`{.interpreted-text role="func"} or
:py`asarray()`{.interpreted-text role="func"}, the dtype of the returned
array now always exactly matches the dtype provided by the caller.
In some cases this change means that a *view* rather than the input
array is returned. The following is an example for this on 64bit Linux
where `long` and `longlong` are the same precision but different
`dtypes`:
>>> arr = np.array([1, 2, 3], dtype="long")
>>> new_dtype = np.dtype("longlong")
>>> new = np.asarray(arr, dtype=new_dtype)
>>> new.dtype is new_dtype
True
>>> new is arr
False
Before the change, the `dtype` did not match because `new is arr` was
`True`.
([gh-21995](https://github.com/numpy/numpy/pull/21995))
DLPack export raises `BufferError`
When an array buffer cannot be exported via DLPack a `BufferError` is
now always raised where previously `TypeError` or `RuntimeError` was
raised. This allows falling back to the buffer protocol or
`__array_interface__` when DLPack was tried first.
([gh-22542](https://github.com/numpy/numpy/pull/22542))
NumPy builds are no longer tested on GCC-6
Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available
on Ubuntu 20.04, so builds using that compiler are no longer tested. We
still test builds using GCC-7 and GCC-8.
([gh-22598](https://github.com/numpy/numpy/pull/22598))
New Features
New attribute `symbol` added to polynomial classes
The polynomial classes in the `numpy.polynomial` package have a new
`symbol` attribute which is used to represent the indeterminate of the
polynomial. This can be used to change the value of the variable when
printing:
>>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y")
>>> print(P_y)
1.0 + 0.0·y¹ - 1.0·y²
Note that the polynomial classes only support 1D polynomials, so
operations that involve polynomials with different symbols are
disallowed when the result would be multivariate:
>>> P = np.polynomial.Polynomial([1, -1]) default symbol is "x"
>>> P_z = np.polynomial.Polynomial([1, 1], symbol="z")
>>> P * P_z
Traceback (most recent call last)
...
ValueError: Polynomial symbols differ
The symbol can be any valid Python identifier. The default is
`symbol=x`, consistent with existing behavior.
([gh-16154](https://github.com/numpy/numpy/pull/16154))
F2PY support for Fortran `character` strings
F2PY now supports wrapping Fortran functions with:
- character (e.g. `character x`)
- character array (e.g. `character, dimension(n) :: x`)
- character string (e.g. `character(len=10) x`)
- and character string array (e.g.
`character(len=10), dimension(n, m) :: x`)
arguments, including passing Python unicode strings as Fortran character
string arguments.
([gh-19388](https://github.com/numpy/numpy/pull/19388))
New function `np.show_runtime`
A new function `numpy.show_runtime` has been added to display the
runtime information of the machine in addition to `numpy.show_config`
which displays the build-related information.
([gh-21468](https://github.com/numpy/numpy/pull/21468))
`strict` option for `testing.assert_array_equal`
The `strict` option is now available for `testing.assert_array_equal`.
Setting `strict=True` will disable the broadcasting behaviour for
scalars and ensure that input arrays have the same data type.
([gh-21595](https://github.com/numpy/numpy/pull/21595))
New parameter `equal_nan` added to `np.unique`
`np.unique` was changed in 1.21 to treat all `NaN` values as equal and
return a single `NaN`. Setting `equal_nan=False` will restore pre-1.21
behavior to treat `NaNs` as unique. Defaults to `True`.
([gh-21623](https://github.com/numpy/numpy/pull/21623))
`casting` and `dtype` keyword arguments for `numpy.stack`
The `casting` and `dtype` keyword arguments are now available for
`numpy.stack`. To use them, write
`np.stack(..., dtype=None, casting='same_kind')`.
`casting` and `dtype` keyword arguments for `numpy.vstack`
The `casting` and `dtype` keyword arguments are now available for
`numpy.vstack`. To use them, write
`np.vstack(..., dtype=None, casting='same_kind')`.
`casting` and `dtype` keyword arguments for `numpy.hstack`
The `casting` and `dtype` keyword arguments are now available for
`numpy.hstack`. To use them, write
`np.hstack(..., dtype=None, casting='same_kind')`.
([gh-21627](https://github.com/numpy/numpy/pull/21627))
The bit generator underlying the singleton RandomState can be changed
The singleton `RandomState` instance exposed in the `numpy.random`
module is initialized at startup with the `MT19937` bit generator. The
new function `set_bit_generator` allows the default bit generator to be
replaced with a user-provided bit generator. This function has been
introduced to provide a method allowing seamless integration of a
high-quality, modern bit generator in new code with existing code that
makes use of the singleton-provided random variate generating functions.
The companion function `get_bit_generator` returns the current bit
generator being used by the singleton `RandomState`. This is provided to
simplify restoring the original source of randomness if required.
The preferred method to generate reproducible random numbers is to use a
modern bit generator in an instance of `Generator`. The function
`default_rng` simplifies instantiation:
>>> rg = np.random.default_rng(3728973198)
>>> rg.random()
The same bit generator can then be shared with the singleton instance so
that calling functions in the `random` module will use the same bit
generator:
>>> orig_bit_gen = np.random.get_bit_generator()
>>> np.random.set_bit_generator(rg.bit_generator)
>>> np.random.normal()
The swap is permanent (until reversed) and so any call to functions in
the `random` module will use the new bit generator. The original can be
restored if required for code to run correctly:
>>> np.random.set_bit_generator(orig_bit_gen)
([gh-21976](https://github.com/numpy/numpy/pull/21976))
`np.void` now has a `dtype` argument
NumPy now allows constructing structured void scalars directly by
passing the `dtype` argument to `np.void`.
([gh-22316](https://github.com/numpy/numpy/pull/22316))
Improvements
F2PY Improvements
- The generated extension modules don\'t use the deprecated NumPy-C
API anymore
- Improved `f2py` generated exception messages
- Numerous bug and `flake8` warning fixes
- various CPP macros that one can use within C-expressions of
signature files are prefixed with `f2py_`. For example, one should
use `f2py_len(x)` instead of `len(x)`
- A new construct `character(f2py_len=...)` is introduced to support
returning assumed length character strings (e.g. `character(len=*)`)
from wrapper functions
A hook to support rewriting `f2py` internal data structures after
reading all its input files is introduced. This is required, for
instance, for BC of SciPy support where character arguments are treated
as character strings arguments in `C` expressions.
([gh-19388](https://github.com/numpy/numpy/pull/19388))
IBM zSystems Vector Extension Facility (SIMD)
Added support for SIMD extensions of zSystem (z13, z14, z15), through
the universal intrinsics interface. This support leads to performance
improvements for all SIMD kernels implemented using the universal
intrinsics, including the following operations: rint, floor, trunc,
ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal,
not_equal, greater, greater_equal, less, less_equal, maximum, minimum,
fmax, fmin, argmax, argmin, add, subtract, multiply, divide.
([gh-20913](https://github.com/numpy/numpy/pull/20913))
NumPy now gives floating point errors in casts
In most cases, NumPy previously did not give floating point warnings or
errors when these happened during casts. For examples, casts like:
np.array([2e300]).astype(np.float32) overflow for float32
np.array([np.inf]).astype(np.int64)
Should now generally give floating point warnings. These warnings should
warn that floating point overflow occurred. For errors when converting
floating point values to integers users should expect invalid value
warnings.
Users can modify the behavior of these warnings using `np.errstate`.
Note that for float to int casts, the exact warnings that are given may
be platform dependent. For example:
arr = np.full(100, value=1000, dtype=np.float64)
arr.astype(np.int8)
May give a result equivalent to (the intermediate cast means no warning
is given):
arr.astype(np.int64).astype(np.int8)
May return an undefined result, with a warning set:
RuntimeWarning: invalid value encountered in cast
The precise behavior is subject to the C99 standard and its
implementation in both software and hardware.
([gh-21437](https://github.com/numpy/numpy/pull/21437))
F2PY supports the value attribute
The Fortran standard requires that variables declared with the `value`
attribute must be passed by value instead of reference. F2PY now
supports this use pattern correctly. So
`integer, intent(in), value :: x` in Fortran codes will have correct
wrappers generated.
([gh-21807](https://github.com/numpy/numpy/pull/21807))
Added pickle support for third-party BitGenerators
The pickle format for bit generators was extended to allow each bit
generator to supply its own constructor when during pickling. Previous
versions of NumPy only supported unpickling `Generator` instances
created with one of the core set of bit generators supplied with NumPy.
Attempting to unpickle a `Generator` that used a third-party bit
generators would fail since the constructor used during the unpickling
was only aware of the bit generators included in NumPy.
([gh-22014](https://github.com/numpy/numpy/pull/22014))
arange() now explicitly fails with dtype=str
Previously, the `np.arange(n, dtype=str)` function worked for `n=1` and
`n=2`, but would raise a non-specific exception message for other values
of `n`. Now, it raises a [TypeError]{.title-ref} informing that `arange`
does not support string dtypes:
>>> np.arange(2, dtype=str)
Traceback (most recent call last)
...
TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>.
([gh-22055](https://github.com/numpy/numpy/pull/22055))
`numpy.typing` protocols are now runtime checkable
The protocols used in `numpy.typing.ArrayLike` and
`numpy.typing.DTypeLike` are now properly marked as runtime checkable,
making them easier to use for runtime type checkers.
([gh-22357](https://github.com/numpy/numpy/pull/22357))
Performance improvements and changes
Faster version of `np.isin` and `np.in1d` for integer arrays
`np.in1d` (used by `np.isin`) can now switch to a faster algorithm (up
to \>10x faster) when it is passed two integer arrays. This is often
automatically used, but you can use `kind="sort"` or `kind="table"` to
force the old or new method, respectively.
([gh-12065](https://github.com/numpy/numpy/pull/12065))
Faster comparison operators
The comparison functions (`numpy.equal`, `numpy.not_equal`,
`numpy.less`, `numpy.less_equal`, `numpy.greater` and
`numpy.greater_equal`) are now much faster as they are now vectorized
with universal intrinsics. For a CPU with SIMD extension AVX512BW, the
performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and
boolean data types, respectively (with N=50000).
([gh-21483](https://github.com/numpy/numpy/pull/21483))
Changes
Better reporting of integer division overflow
Integer division overflow of scalars and arrays used to provide a
`RuntimeWarning` and the return value was undefined leading to crashes
at rare occasions:
>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)
Integer division overflow now returns the input dtype\'s minimum value
and raise the following `RuntimeWarning`:
>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: overflow encountered in floor_divide
array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648,
-2147483648, -2147483648, -2147483648, -2147483648, -2147483648],
dtype=int32)
([gh-21506](https://github.com/numpy/numpy/pull/21506))
`masked_invalid` now modifies the mask in-place
When used with `copy=False`, `numpy.ma.masked_invalid` now modifies the
input masked array in-place. This makes it behave identically to
`masked_where` and better matches the documentation.
([gh-22046](https://github.com/numpy/numpy/pull/22046))
`nditer`/`NpyIter` allows all allocating all operands
The NumPy iterator available through `np.nditer` in Python and as
`NpyIter` in C now supports allocating all arrays. The iterator shape
defaults to `()` in this case. The operands dtype must be provided,
since a \"common dtype\" cannot be inferred from the other inputs.
([gh-22457](https://github.com/numpy/numpy/pull/22457))
Checksums
MD5
1f08c901040ebe1324d16cfc71fe3cd2 numpy-1.24.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
d35a59a1ccf1542d690860ad85fbb0f0 numpy-1.24.0rc1-cp310-cp310-macosx_11_0_arm64.whl
c7db37964986d7b9756fd1aa077b7e72 numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
72c2dad61fc86c4d87e23d0de975e0b6 numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3c769f1089253266d7a522144696bde3 numpy-1.24.0rc1-cp310-cp310-win32.whl
96226a2045063b9caff40fe2a2098e72 numpy-1.24.0rc1-cp310-cp310-win_amd64.whl
b20897446f52e7fcde80e12c7cc1dc1e numpy-1.24.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
9cafe21759e90c705533d1f3201d35aa numpy-1.24.0rc1-cp311-cp311-macosx_11_0_arm64.whl
0e8621d07dae7ffaba6cfe83f7288042 numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c67808eed6ba6f9e9074e6f11951f09 numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1065bea5d0670360353e698093954e35 numpy-1.24.0rc1-cp311-cp311-win32.whl
fe2122ec86b45e00b648071ee2931fbc numpy-1.24.0rc1-cp311-cp311-win_amd64.whl
ab3e8424a04338d43ed466ade66de7a8 numpy-1.24.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
fc6eac08a59c4efb3962d990ff94f2b7 numpy-1.24.0rc1-cp38-cp38-macosx_11_0_arm64.whl
3498ac93ae6abba813e5d76f86ae5356 numpy-1.24.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
629ce4b8cb011ff735ebd482fbf51702 numpy-1.24.0rc1-cp38-cp38-win32.whl
cb503a78e27f0f46b6b43d211275dc58 numpy-1.24.0rc1-cp38-cp38-win_amd64.whl
ffccdb9750336f5e55ab90c8eb7c1a8d numpy-1.24.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
9751b9f833238a7309ad4e6b43fa8cb5 numpy-1.24.0rc1-cp39-cp39-macosx_11_0_arm64.whl
cb8a10f411773f0ac5e06df067599d45 numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8d670816134824972afb512498b95ede numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60687b97ab720f6be9e3542e5761769f numpy-1.24.0rc1-cp39-cp39-win32.whl
11fd99748acc0726ac164034c32bb3cd numpy-1.24.0rc1-cp39-cp39-win_amd64.whl
09e1d6f6d75facaf84d2b87a33874d4b numpy-1.24.0rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
2da9ad07343b410aca4edf1285e4266b numpy-1.24.0rc1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9a0e466a55632cc1d67db119f586cd05 numpy-1.24.0rc1-pp38-pypy38_pp73-win_amd64.whl
abc863895b02cdcc436474f6cdf2d14d numpy-1.24.0rc1.tar.gz
SHA256
36acf6043b94a0e8af75d0a1931678d20e673b83fd79798c805ebc995e233cff numpy-1.24.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
244c2c22f776e168e1060112f87717d73df2462e0eba4095a7673fe87db49b7a numpy-1.24.0rc1-cp310-cp310-macosx_11_0_arm64.whl
730112e692c165e8ad69071c70653522ee19d8c8af2da839339de01013eeef24 numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
960b0d980adfa5c37fea89fc556bb482f9d957a3188be46d03a00fa1bd8f617b numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f54788f1a6941cb1b57bcf5ff09a281e5db75bbf9f2ac9534a626128ded0244f numpy-1.24.0rc1-cp310-cp310-win32.whl
07fef63a5113969d7897589928870c57dd3e28671d617f688486f12c3a3b466a numpy-1.24.0rc1-cp310-cp310-win_amd64.whl
aea88e02d9335052172f4d6c8163721c3edd086ea3bf3bc9b6d5c55661540f1b numpy-1.24.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
3950be11c03d250ea780280ce37a6fe7bd21dafcb478e08190c72b6c58ed7d18 numpy-1.24.0rc1-cp311-cp311-macosx_11_0_arm64.whl
743c30cda228f8be9fe552453870b412b38ac232972c617a0f18765dedf395a5 numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cab1335b70e24e88ef2b9f727b9f5fc6e0d31d9fe9da0213f6c28cf615b65db0 numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5283759f0dd905f9e62ed55775345fbb233a53146ceaf2f75e96d939f564ee79 numpy-1.24.0rc1-cp311-cp311-win32.whl
427bd9c45777e8baf782b6b33ebc26a88716c2d9b76b0474987660c2c066dca0 numpy-1.24.0rc1-cp311-cp311-win_amd64.whl
20edfad312395d1cb8ad6ca5d2c42d2dab057f5d1920af3f94c7a72103335d8a numpy-1.24.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
79134b92e1fb86915369753b3e64a359416cd98ea2329d270eb4e1d0ab300c0d numpy-1.24.0rc1-cp38-cp38-macosx_11_0_arm64.whl
6f00858573e2316ac5d190cf81dc178d94579969f827ac34c7a53110428e6f72 numpy-1.24.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8d6f78be3ad0bd9b4adecba2fda570ef491ae69f8c7cc84acd382802a81e242 numpy-1.24.0rc1-cp38-cp38-win32.whl
f1f5fa912df64dd48ec55352b72f4b036ab7b3911e996703f436e17baca780f9 numpy-1.24.0rc1-cp38-cp38-win_amd64.whl
8d149b3c3062dc68e29bdb244edc30c5d80e2c654b5c27c32773bf7354452b48 numpy-1.24.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
d177fbd4d22248640d73f07c3aac2cc1f79c412f61564452abd08606ee5e3713 numpy-1.24.0rc1-cp39-cp39-macosx_11_0_arm64.whl
05faa4ecb98d7bc593afc5b10c25f0e7dd65244b653756b083c605fbf60b9b67 numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
06d8827c6fa511b61047376efc3a677d447193bf88e6bbde35b4e5223a4b58d6 numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
15605b92bf10b10e110a9c0f1c4ef6cd58246532c62a0c3d3188c05e69cdcdb6 numpy-1.24.0rc1-cp39-cp39-win32.whl
8046f5c23769791be8432a592b9881984e0e4abc7f552c7e5c349420a27323e7 numpy-1.24.0rc1-cp39-cp39-win_amd64.whl
aa9c4a2f65d669e6559123154da944ad6bd7605cbba5cce81bf6794617870510 numpy-1.24.0rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
e44fd1bdfa50979ddec76318e21abc82ee3858e5f45dfc5153b6f660d9d29851 numpy-1.24.0rc1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1802199d70d9f8ac11eb63a1ef50d33915b78a84bacacaadb2896175005103d4 numpy-1.24.0rc1-pp38-pypy38_pp73-win_amd64.whl
d601180710004799acb8f80e564b84e71490fac9d84e115e2f5b0f6709754f16 numpy-1.24.0rc1.tar.gz
```
### 1.23.5
```
the 1.23.4 release and keeps the build infrastructure current. The
Python versions supported for this release are 3.8-3.11.
Contributors
A total of 7 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.
- \DWesl
- Aayush Agrawal +
- Adam Knapp +
- Charles Harris
- Navpreet Singh +
- Sebastian Berg
- Tania Allard
Pull requests merged
A total of 10 pull requests were merged for this release.
- [22489](https://github.com/numpy/numpy/pull/22489): TST, MAINT: Replace most setup with setup_method (also teardown)
- [22490](https://github.com/numpy/numpy/pull/22490): MAINT, CI: Switch to cygwin/cygwin-install-actionv2
- [22494](https://github.com/numpy/numpy/pull/22494): TST: Make test_partial_iteration_cleanup robust but require leak\...
- [22592](https://github.com/numpy/numpy/pull/22592): MAINT: Ensure graceful handling of large header sizes
- [22593](https://github.com/numpy/numpy/pull/22593): TYP: Spelling alignment for array flag literal
- [22594](https://github.com/numpy/numpy/pull/22594): BUG: Fix bounds checking for `random.logseries`
- [22595](https://github.com/numpy/numpy/pull/22595): DEV: Update GH actions and Dockerfile for Gitpod
- [22596](https://github.com/numpy/numpy/pull/22596): CI: Only fetch in actions/checkout
- [22597](https://github.com/numpy/numpy/pull/22597): BUG: Decrement ref count in gentype_reduce if allocated memory\...
- [22625](https://github.com/numpy/numpy/pull/22625): BUG: Histogramdd breaks on big arrays in Windows
Checksums
MD5
8a412b79d975199cefadb465279fd569 numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
1b56e8e6a0516c78473657abf0710538 numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
c787f4763c9a5876e86a17f1651ba458 numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
db07645022e56747ba3f00c2d742232e numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c63a6fb7cc16a13aabc82ec57ac6bb4d numpy-1.23.5-cp310-cp310-win32.whl
3fea9247e1d812600015641941fa273f numpy-1.23.5-cp310-cp310-win_amd64.whl
4222cfb36e5ac9aec348c81b075e2c05 numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
6c7102f185b310ac70a62c13d46f04e6 numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
6b7319f66bf7ac01b49e2a32470baf28 numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3c60928ddb1f55163801f06ac2229eb0 numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6936b6bcfd6474acc7a8c162a9393b3c numpy-1.23.5-cp311-cp311-win32.whl
6c9af68b7b56c12c913678cafbdc44d6 numpy-1.23.5-cp311-cp311-win_amd64.whl
699daeac883260d3f182ae4bbbd9bbd2 numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
6c233a36339de0652139e78ef91504d4 numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
57d5439556ab5078c91bdeffd9c0036e numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a8045b59187f2e0ccd4294851adbbb8a numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7f38f7e560e4bf41490372ab84aa7a38 numpy-1.23.5-cp38-cp38-win32.whl
76095726ba459d7f761b44acf2e56bd1 numpy-1.23.5-cp38-cp38-win_amd64.whl
174befd584bc1b03ed87c8f0d149a58e numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
9cbac793d77278f5d27a7979b64f6b5b numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
6e417b087044e90562183b33f3049b09 numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
54fa63341eaa6da346d824399e8237f6 numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc14d62a158e99c57f925c86551e45f0 numpy-1.23.5-cp39-cp39-win32.whl
bad36b81e7e84bd7a028affa0659d235 numpy-1.23.5-cp39-cp39-win_amd64.whl
b4d17d6b79a8354a2834047669651963 numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
89f6dc4a4ff63fca6af1223111cd888d numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
633d574a35b8592bab502ef569b0731e numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
8b2692a511a3795f3af8af2cd7566a15 numpy-1.23.5.tar.gz
SHA256
9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63 numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43 numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1 numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280 numpy-1.23.5-cp310-cp310-win32.whl
dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6 numpy-1.23.5-cp310-cp310-win_amd64.whl
ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96 numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2 numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387 numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0 numpy-1.23.5-cp311-cp311-win32.whl
0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d numpy-1.23.5-cp311-cp311-win_amd64.whl
f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9 numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398 numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07 numpy-1.23.5-cp38-cp38-win32.whl
ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e numpy-1.23.5-cp38-cp38-win_amd64.whl
8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719 numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481 numpy-1.23.5-cp39-cp39-win32.whl
09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df numpy-1.23.5-cp39-cp39-win_amd64.whl
abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8 numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135 numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
01dd17cbb340bf0fc23981e52e1
Update certifi from 2019.11.28 to 2022.12.7.
The bot wasn't able to find a changelog for this release. Got an idea?
Links
- PyPI: https://pypi.org/project/certifi - Repo: https://github.com/certifi/python-certifiUpdate Click from 7.0 to 8.1.3.
Changelog
### 8.1.3 ``` ------------- Released 2022-04-28 - Use verbose form of ``typing.Callable`` for ``command`` and ``group``. :issue:`2255` - Show error when attempting to create an option with ``multiple=True, is_flag=True``. Use ``count`` instead. :issue:`2246` ``` ### 8.1.2 ``` ------------- Released 2022-03-31 - Fix error message for readable path check that was mixed up with the executable check. :pr:`2236` - Restore parameter order for ``Path``, placing the ``executable`` parameter at the end. It is recommended to use keyword arguments instead of positional arguments. :issue:`2235` ``` ### 8.1.1 ``` ------------- Released 2022-03-30 - Fix an issue with decorator typing that caused type checking to report that a command was not callable. :issue:`2227` ``` ### 8.1.0 ``` ------------- Released 2022-03-28 - Drop support for Python 3.6. :pr:`2129` - Remove previously deprecated code. :pr:`2130` - ``Group.resultcallback`` is renamed to ``result_callback``. - ``autocompletion`` parameter to ``Command`` is renamed to ``shell_complete``. - ``get_terminal_size`` is removed, use ``shutil.get_terminal_size`` instead. - ``get_os_args`` is removed, use ``sys.argv[1:]`` instead. - Rely on :pep:`538` and :pep:`540` to handle selecting UTF-8 encoding instead of ASCII. Click's locale encoding detection is removed. :issue:`2198` - Single options boolean flags with ``show_default=True`` only show the default if it is ``True``. :issue:`1971` - The ``command`` and ``group`` decorators can be applied with or without parentheses. :issue:`1359` - The ``Path`` type can check whether the target is executable. :issue:`1961` - ``Command.show_default`` overrides ``Context.show_default``, instead of the other way around. :issue:`1963` - Parameter decorators and ``group`` handles ``cls=None`` the same as not passing ``cls``. ``option`` handles ``help=None`` the same as not passing ``help``. :issue:`1959` - A flag option with ``required=True`` requires that the flag is passed instead of choosing the implicit default value. :issue:`1978` - Indentation in help text passed to ``Option`` and ``Command`` is cleaned the same as using the ``option`` and ``command`` decorators does. A command's ``epilog`` and ``short_help`` are also processed. :issue:`1985` - Store unprocessed ``Command.help``, ``epilog`` and ``short_help`` strings. Processing is only done when formatting help text for output. :issue:`2149` - Allow empty str input for ``prompt()`` when ``confirmation_prompt=True`` and ``default=""``. :issue:`2157` - Windows glob pattern expansion doesn't fail if a value is an invalid pattern. :issue:`2195` - It's possible to pass a list of ``params`` to ``command``. Any params defined with decorators are appended to the passed params. :issue:`2131`. - ``command`` decorator is annotated as returning the correct type if a ``cls`` argument is used. :issue:`2211` - A ``Group`` with ``invoke_without_command=True`` and ``chain=False`` will invoke its result callback with the group function's return value. :issue:`2124` - ``to_info_dict`` will not fail if a ``ParamType`` doesn't define a ``name``. :issue:`2168` - Shell completion prioritizes option values with option prefixes over new options. :issue:`2040` - Options that get an environment variable value using ``autoenvvar_prefix`` treat an empty value as ``None``, consistent with a direct ``envvar``. :issue:`2146` ``` ### 8.0.4 ``` ------------- Released 2022-02-18 - ``open_file`` recognizes ``Path("-")`` as a standard stream, the same as the string ``"-"``. :issue:`2106` - The ``option`` and ``argument`` decorators preserve the type annotation of the decorated function. :pr:`2155` - A callable default value can customize its help text by overriding ``__str__`` instead of always showing ``(dynamic)``. :issue:`2099` - Fix a typo in the Bash completion script that affected file and directory completion. If this script was generated by a previous version, it should be regenerated. :issue:`2163` - Fix typing for ``echo`` and ``secho`` file argument. :issue:`2174, 2185` ``` ### 8.0.3 ``` ------------- Released 2021-10-10 - Fix issue with ``Path(resolve_path=True)`` type creating invalid paths. :issue:`2088` - Importing ``readline`` does not cause the ``confirm()`` prompt to disappear when pressing backspace. :issue:`2092` - Any default values injected by ``invoke()`` are cast to the corresponding parameter's type. :issue:`2089, 2090` ``` ### 8.0.2 ``` ------------- Released 2021-10-08 - ``is_bool_flag`` is not set to ``True`` if ``is_flag`` is ``False``. :issue:`1925` - Bash version detection is locale independent. :issue:`1940` - Empty ``default`` value is not shown for ``multiple=True``. :issue:`1969` - Fix shell completion for arguments that start with a forward slash such as absolute file paths. :issue:`1929` - ``Path`` type with ``resolve_path=True`` resolves relative symlinks to be relative to the containing directory. :issue:`1921` - Completion does not skip Python's resource cleanup when exiting, avoiding some unexpected warning output. :issue:`1738, 2017` - Fix type annotation for ``type`` argument in ``prompt`` function. :issue:`2062` - Fix overline and italic styles, which were incorrectly added when adding underline. :pr:`2058` - An option with ``count=True`` will not show "[x>=0]" in help text. :issue:`2072` - Default values are not cast to the parameter type twice during processing. :issue:`2085` - Options with ``multiple`` and ``flag_value`` use the flag value instead of leaving an internal placeholder. :issue:`2001` ``` ### 8.0.1 ``` ------------- Released 2021-05-19 - Mark top-level names as exported so type checking understand imports in user projects. :issue:`1879` - Annotate ``Context.obj`` as ``Any`` so type checking allows all operations on the arbitrary object. :issue:`1885` - Fix some types that weren't available in Python 3.6.0. :issue:`1882` - Fix type checking for iterating over ``ProgressBar`` object. :issue:`1892` - The ``importlib_metadata`` backport package is installed on Python < 3.8. :issue:`1889` - Arguments with ``nargs=-1`` only use env var value if no command line values are given. :issue:`1903` - Flag options guess their type from ``flag_value`` if given, like regular options do from ``default``. :issue:`1886` - Added documentation that custom parameter types may be passed already valid values in addition to strings. :issue:`1898` - Resolving commands returns the name that was given, not ``command.name``, fixing an unintended change to help text and ``default_map`` lookups. When using patterns like ``AliasedGroup``, override ``resolve_command`` to change the name that is returned if needed. :issue:`1895` - If a default value is invalid, it does not prevent showing help text. :issue:`1889` - Pass ``windows_expand_args=False`` when calling the main command to disable pattern expansion on Windows. There is no way to escape patterns in CMD, so if the program needs to pass them on as-is then expansion must be disabled. :issue:`1901` ``` ### 8.0.0 ``` ------------- Released 2021-05-11 - Drop support for Python 2 and 3.5. - Colorama is always installed on Windows in order to provide style and color support. :pr:`1784` - Adds a repr to Command, showing the command name for friendlier debugging. :issue:`1267`, :pr:`1295` - Add support for distinguishing the source of a command line parameter. :issue:`1264`, :pr:`1329` - Add an optional parameter to ``ProgressBar.update`` to set the ``current_item``. :issue:`1226`, :pr:`1332` - ``version_option`` uses ``importlib.metadata`` (or the ``importlib_metadata`` backport) instead of ``pkg_resources``. The version is detected based on the package name, not the entry point name. The Python package name must match the installed package name, or be passed with ``package_name=``. :issue:`1582` - If validation fails for a prompt with ``hide_input=True``, the value is not shown in the error message. :issue:`1460` - An ``IntRange`` or ``FloatRange`` option shows the accepted range in its help text. :issue:`1525`, :pr:`1303` - ``IntRange`` and ``FloatRange`` bounds can be open (``<``) instead of closed (``<=``) by setting ``min_open`` and ``max_open``. Error messages have changed to reflect this. :issue:`1100` - An option defined with duplicate flag names (``"--foo/--foo"``) raises a ``ValueError``. :issue:`1465` - ``echo()`` will not fail when using pytest's ``capsys`` fixture on Windows. :issue:`1590` - Resolving commands returns the canonical command name instead of the matched name. This makes behavior such as help text and ``Context.invoked_subcommand`` consistent when using patterns like ``AliasedGroup``. :issue:`1422` - The ``BOOL`` type accepts the values "on" and "off". :issue:`1629` - A ``Group`` with ``invoke_without_command=True`` will always invoke its result callback. :issue:`1178` - ``nargs == -1`` and ``nargs > 1`` is parsed and validated for values from environment variables and defaults. :issue:`729` - Detect the program name when executing a module or package with ``python -m name``. :issue:`1603` - Include required parent arguments in help synopsis of subcommands. :issue:`1475` - Help for boolean flags with ``show_default=True`` shows the flag name instead of ``True`` or ``False``. :issue:`1538` - Non-string objects passed to ``style()`` and ``secho()`` will be converted to string. :pr:`1146` - ``edit(require_save=True)`` will detect saves for editors that exit very fast on filesystems with 1 second resolution. :pr:`1050` - New class attributes make it easier to use custom core objects throughout an entire application. :pr:`938` - ``Command.context_class`` controls the context created when running the command. - ``Context.invoke`` creates new contexts of the same type, so a custom type will persist to invoked subcommands. - ``Context.formatter_class`` controls the formatter used to generate help and usage. - ``Group.command_class`` changes the default type for subcommands with ``group.command()``. - ``Group.group_class`` changes the default type for subgroups with ``group.group()``. Setting it to ``type`` will create subgroups of the same type as the group itself. - Core objects use ``super()`` consistently for better support of subclassing. - Use ``Context.with_resource()`` to manage resources that would normally be used in a ``with`` statement, allowing them to be used across subcommands and callbacks, then cleaned up when the context ends. :pr:`1191` - The result object returned by the test runner's ``invoke()`` method has a ``return_value`` attribute with the value returned by the invoked command. :pr:`1312` - Required arguments with the ``Choice`` type show the choices in curly braces to indicate that one is required (``{a|b|c}``). :issue:`1272` - If only a name is passed to ``option()``, Click suggests renaming it to ``--name``. :pr:`1355` - A context's ``show_default`` parameter defaults to the value from the parent context. :issue:`1565` - ``click.style()`` can output 256 and RGB color codes. Most modern terminals support these codes. :pr:`1429` - When using ``CliRunner.invoke()``, the replaced ``stdin`` file has ``name`` and ``mode`` attributes. This lets ``File`` options with the ``-`` value match non-testing behavior. :issue:`1064` - When creating a ``Group``, allow passing a list of commands instead of a dict. :issue:`1339` - When a long option name isn't valid, use ``difflib`` to make better suggestions for possible corrections. :issue:`1446` - Core objects have a ``to_info_dict()`` method. This gathers information about the object's structure that could be useful for a tool generating user-facing documentation. To get the structure of an entire CLI, use ``Context(cli).to_info_dict()``. :issue:`461` - Redesign the shell completion system. :issue:`1484`, :pr:`1622` - Support Bash >= 4.4, Zsh, and Fish, with the ability for extensions to add support for other shells. - Allow commands, groups, parameters, and types to override their completions suggestions. - Groups complete the names commands were registered with, which can differ from the name they were created with. - The ``autocompletion`` parameter for options and arguments is renamed to ``shell_complete``. The function must take ``ctx, param, incomplete``, must do matching rather than return all values, and must return a list of strings or a list of ``CompletionItem``. The old name and behavior is deprecated and will be removed in 8.1. - The env var values used to start completion have changed order. The shell now comes first, such as ``{shell}_source`` rather than ``source_{shell}``, and is always required. - Completion correctly parses command line strings with incomplete quoting or escape sequences. :issue:`1708` - Extra context settings (``obj=...``, etc.) are passed on to the completion system. :issue:`942` - Include ``--help`` option in completion. :pr:`1504` - ``ParameterSource`` is an ``enum.Enum`` subclass. :issue:`1530` - Boolean and UUID types strip surrounding space before converting. :issue:`1605` - Adjusted error message from parameter type validation to be more consistent. Quotes are used to distinguish the invalid value. :issue:`1605` - The default value for a parameter with ``nargs`` > 1 and ``multiple=True`` must be a list of tuples. :issue:`1649` - When getting the value for a parameter, the default is tried in the same section as other sources to ensure consistent processing. :issue:`1649` - All parameter types accept a value that is already the correct type. :issue:`1649` - For shell completion, an argument is considered incomplete if its value did not come from the command line args. :issue:`1649` - Added ``ParameterSource.PROMPT`` to track parameter values that were prompted for. :issue:`1649` - Options with ``nargs`` > 1 no longer raise an error if a default is not given. Parameters with ``nargs`` > 1 default to ``None``, and parameters with ``multiple=True`` or ``nargs=-1`` default to an empty tuple. :issue:`472` - Handle empty env vars as though the option were not passed. This extends the change introduced in 7.1 to be consistent in more cases. :issue:`1285` - ``Parameter.get_default()`` checks ``Context.default_map`` to handle overrides consistently in help text, ``invoke()``, and prompts. :issue:`1548` - Add ``prompt_required`` param to ``Option``. When set to ``False``, the user will only be prompted for an input if no value was passed. :issue:`736` - Providing the value to an option can be made optional through ``is_flag=False``, and the value can instead be prompted for or passed in as a default value. :issue:`549, 736, 764, 921, 1015, 1618` - Fix formatting when ``Command.options_metavar`` is empty. :pr:`1551` - Revert adding space between option help text that wraps. :issue:`1831` - The default value passed to ``prompt`` will be cast to the correct type like an input value would be. :pr:`1517` - Automatically generated short help messages will stop at the first ending of a phrase or double linebreak. :issue:`1082` - Skip progress bar render steps for efficiency with very fast iterators by setting ``update_min_steps``. :issue:`676` - Respect ``case_sensitive=False`` when doing shell completion for ``Choice`` :issue:`1692` - Use ``mkstemp()`` instead of ``mktemp()`` in pager implementation. :issue:`1752` - If ``Option.show_default`` is a string, it is displayed even if ``default`` is ``None``. :issue:`1732` - ``click.get_terminal_size()`` is deprecated and will be removed in 8.1. Use :func:`shutil.get_terminal_size` instead. :issue:`1736` - Control the location of the temporary directory created by ``CLIRunner.isolated_filesystem`` by passing ``temp_dir``. A custom directory will not be removed automatically. :issue:`395` - ``click.confirm()`` will prompt until input is given if called with ``default=None``. :issue:`1381` - Option prompts validate the value with the option's callback in addition to its type. :issue:`457` - ``confirmation_prompt`` can be set to a custom string. :issue:`723` - Allow styled output in Jupyter on Windows. :issue:`1271` - ``style()`` supports the ``strikethrough``, ``italic``, and ``overline`` styles. :issue:`805, 1821` - Multiline marker is removed from short help text. :issue:`1597` - Restore progress bar behavior of echoing only the label if the file is not a TTY. :issue:`1138` - Progress bar output is shown even if execution time is less than 0.5 seconds. :issue:`1648` - Progress bar ``item_show_func`` shows the current item, not the previous item. :issue:`1353` - The ``Path`` param type can be passed ``path_type=pathlib.Path`` to return a path object instead of a string. :issue:`405` - ``TypeError`` is raised when parameter with ``multiple=True`` or ``nargs > 1`` has non-iterable default. :issue:`1749` - Add a ``pass_meta_key`` decorator for passing a key from ``Context.meta``. This is useful for extensions using ``meta`` to store information. :issue:`1739` - ``Path`` ``resolve_path`` resolves symlinks on Windows Python < 3.8. :issue:`1813` - Command deprecation notice appears at the start of the help text, as well as in the short help. The notice is not in all caps. :issue:`1791` - When taking arguments from ``sys.argv`` on Windows, glob patterns, user dir, and env vars are expanded. :issue:`1096` - Marked messages shown by the CLI with ``gettext()`` to allow applications to translate Click's built-in strings. :issue:`303` - Writing invalid characters to ``stderr`` when using the test runner does not raise a ``UnicodeEncodeError``. :issue:`848` - Fix an issue where ``readline`` would clear the entire ``prompt()`` line instead of only the input when pressing backspace. :issue:`665` - Add all kwargs passed to ``Context.invoke()`` to ``ctx.params``. Fixes an inconsistency when nesting ``Context.forward()`` calls. :issue:`1568` - The ``MultiCommand.resultcallback`` decorator is renamed to ``result_callback``. The old name is deprecated. :issue:`1160` - Fix issues with ``CliRunner`` output when using ``echo_stdin=True``. :issue:`1101` - Fix a bug of ``click.utils.make_default_short_help`` for which the returned string could be as long as ``max_width + 3``. :issue:`1849` - When defining a parameter, ``default`` is validated with ``multiple`` and ``nargs``. More validation is done for values being processed as well. :issue:`1806` - ``HelpFormatter.write_text`` uses the full line width when wrapping text. :issue:`1871` ``` ### 7.1.2 ``` ------------- Released 2020-04-27 - Revert applying shell quoting to commands for ``echo_with_pager`` and ``edit``. This was intended to allows spaces in commands, but caused issues if the string was actually a command and arguments, or on Windows. Instead, the string must be quoted manually as it should appear on the command line. :issue:`1514` ``` ### 7.1.1 ``` ------------- Released 2020-03-09 - Fix ``ClickException`` output going to stdout instead of stderr. :issue:`1495` ``` ### 7.1 ``` ----------- Released 2020-03-09 - Fix PyPI package name, "click" is lowercase again. - Fix link in ``unicode_literals`` error message. :pr:`1151` - Add support for colored output on UNIX Jupyter notebooks. :issue:`1185` - Operations that strip ANSI controls will strip the cursor hide/show sequences. :issue:`1216` - Remove unused compat shim for ``bytes``. :pr:`1195` - Expand testing around termui, especially getchar on Windows. :issue:`1116` - Fix output on Windows Python 2.7 built with MSVC 14. :pr:`1342` - Fix ``OSError`` when running in MSYS2. :issue:`1338` - Fix ``OSError`` when redirecting to ``NUL`` stream on Windows. :issue:`1065` - Fix memory leak when parsing Unicode arguments on Windows. :issue:`1136` - Fix error in new AppEngine environments. :issue:`1462` - Always return one of the passed choices for ``click.Choice`` :issue:`1277`, :pr:`1318` - Add ``no_args_is_help`` option to ``click.Command``, defaults to False :pr:`1167` - Add ``show_default`` parameter to ``Context`` to enable showing defaults globally. :issue:`1018` - Handle ``env MYPATH=''`` as though the option were not passed. :issue:`1196` - It is once again possible to call ``next(bar)`` on an active progress bar instance. :issue:`1125` - ``open_file`` with ``atomic=True`` retains permissions of existing files and respects the current umask for new files. :issue:`1376` - When using the test ``CliRunner`` with ``mix_stderr=False``, if ``result.stderr`` is empty it will not raise a ``ValueError``. :issue:`1193` - Remove the unused ``mix_stderr`` parameter from ``CliRunner.invoke``. :issue:`1435` - Fix ``TypeError`` raised when using bool flags and specifying ``type=bool``. :issue:`1287` - Newlines in option help text are replaced with spaces before re-wrapping to avoid uneven line breaks. :issue:`834` - ``MissingParameter`` exceptions are printable in the Python interpreter. :issue:`1139` - Fix how default values for file-type options are shown during prompts. :issue:`914` - Fix environment variable automatic generation for commands containing ``-``. :issue:`1253` - Option help text replaces newlines with spaces when rewrapping, but preserves paragraph breaks, fixing multiline formatting. :issue:`834, 1066, 1397` - Option help text that is wrapped adds an extra newline at the end to distinguish it from the next option. :issue:`1075` - Consider ``sensible-editor`` when determining the editor to use for ``click.edit()``. :pr:`1469` - Arguments to system calls such as the executable path passed to ``click.edit`` can contains spaces. :pr:`1470` - Add ZSH completion autoloading and error handling. :issue:`1348` - Add a repr to ``Command``, ``Group``, ``Option``, and ``Argument``, showing the name for friendlier debugging. :issue:`1267` - Completion doesn't consider option names if a value starts with ``-`` after the ``--`` separator. :issue:`1247` - ZSH completion escapes special characters in values. :pr:`1418` - Add completion support for Fish shell. :pr:`1423` - Decoding bytes option values falls back to UTF-8 in more cases. :pr:`1468` - Make the warning about old 2-arg parameter callbacks a deprecation warning, to be removed in 8.0. This has been a warning since Click 2.0. :pr:`1492` - Adjust error messages to standardize the types of quotes used so they match error messages from Python. ```Links
- PyPI: https://pypi.org/project/click - Changelog: https://pyup.io/changelogs/click/ - Homepage: https://palletsprojects.com/p/click/Update numpy from 1.17.1 to 1.24.2.
Changelog
### 1.24.1 ``` discovered after the 1.24.0 release. The Python versions supported by this release are 3.8-3.11. Contributors A total of 12 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - Andrew Nelson - Ben Greiner + - Charles Harris - Clément Robert - Matteo Raso - Matti Picus - Melissa Weber Mendonça - Miles Cranmer - Ralf Gommers - Rohit Goswami - Sayed Adel - Sebastian Berg Pull requests merged A total of 18 pull requests were merged for this release. - [22820](https://github.com/numpy/numpy/pull/22820): BLD: add workaround in setup.py for newer setuptools - [22830](https://github.com/numpy/numpy/pull/22830): BLD: CIRRUS_TAG redux - [22831](https://github.com/numpy/numpy/pull/22831): DOC: fix a couple typos in 1.23 notes - [22832](https://github.com/numpy/numpy/pull/22832): BUG: Fix refcounting errors found using pytest-leaks - [22834](https://github.com/numpy/numpy/pull/22834): BUG, SIMD: Fix invalid value encountered in several ufuncs - [22837](https://github.com/numpy/numpy/pull/22837): TST: ignore more np.distutils.log imports - [22839](https://github.com/numpy/numpy/pull/22839): BUG: Do not use getdata() in np.ma.masked_invalid - [22847](https://github.com/numpy/numpy/pull/22847): BUG: Ensure correct behavior for rows ending in delimiter in\... - [22848](https://github.com/numpy/numpy/pull/22848): BUG, SIMD: Fix the bitmask of the boolean comparison - [22857](https://github.com/numpy/numpy/pull/22857): BLD: Help raspian arm + clang 13 about \_\_builtin_mul_overflow - [22858](https://github.com/numpy/numpy/pull/22858): API: Ensure a full mask is returned for masked_invalid - [22866](https://github.com/numpy/numpy/pull/22866): BUG: Polynomials now copy properly (#22669) - [22867](https://github.com/numpy/numpy/pull/22867): BUG, SIMD: Fix memory overlap in ufunc comparison loops - [22868](https://github.com/numpy/numpy/pull/22868): BUG: Fortify string casts against floating point warnings - [22875](https://github.com/numpy/numpy/pull/22875): TST: Ignore nan-warnings in randomized out tests - [22883](https://github.com/numpy/numpy/pull/22883): MAINT: restore npymath implementations needed for freebsd - [22884](https://github.com/numpy/numpy/pull/22884): BUG: Fix integer overflow in in1d for mixed integer dtypes #22877 - [22887](https://github.com/numpy/numpy/pull/22887): BUG: Use whole file for encoding checks with `charset_normalizer`. Checksums MD5 9e543db90493d6a00939bd54c2012085 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl 4ebd7af622bf617b4876087e500d7586 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl 0c0a3012b438bb455a6c2fadfb1be76a numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0bddb527345449df624d3cb9aa0e1b75 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b246beb773689d97307f7b4c2970f061 numpy-1.24.1-cp310-cp310-win32.whl 1f3823999fce821a28dee10ac6fdd721 numpy-1.24.1-cp310-cp310-win_amd64.whl 8eedcacd6b096a568e4cb393d43b3ae5 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl 50bddb05acd54b4396100a70522496dd numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl 2a76bd9da8a78b44eb816bd70fa3aee3 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9e86658a414272f9749bde39344f9b76 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 915dfb89054e1631574a22a9b53a2b25 numpy-1.24.1-cp311-cp311-win32.whl ab7caa2c6c20e1fab977e1a94dede976 numpy-1.24.1-cp311-cp311-win_amd64.whl 8246de961f813f5aad89bca3d12f81e7 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl 58366b1a559baa0547ce976e416ed76d numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl a96f29bf106a64f82b9ba412635727d1 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4c32a43bdb85121614ab3e99929e33c7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 09b20949ed21683ad7c9cbdf9ebb2439 numpy-1.24.1-cp38-cp38-win32.whl 9e9f1577f874286a8bdff8dc5551eb9f numpy-1.24.1-cp38-cp38-win_amd64.whl 4383c1137f0287df67c364fbdba2bc72 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl 987f22c49b2be084b5d72f88f347d31e numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl 848ad020bba075ed8f19072c64dcd153 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 864b159e644848bc25f881907dbcf062 numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl db339ec0b2693cac2d7cf9ca75c334b1 numpy-1.24.1-cp39-cp39-win32.whl fec91d4c85066ad8a93816d71b627701 numpy-1.24.1-cp39-cp39-win_amd64.whl 619af9cd4f33b668822ae2350f446a15 numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 46f19b4b147f8836c2bd34262fabfffa numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e85b245c57a10891b3025579bf0cf298 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl dd3aaeeada8e95cc2edf9a3a4aa8b5af numpy-1.24.1.tar.gz SHA256 179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7 numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2 numpy-1.24.1-cp310-cp310-win32.whl b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2 numpy-1.24.1-cp310-cp310-win_amd64.whl 7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl 28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032 numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36 numpy-1.24.1-cp311-cp311-win32.whl de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51 numpy-1.24.1-cp311-cp311-win_amd64.whl b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl 26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954 numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1 numpy-1.24.1-cp38-cp38-win32.whl 6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c numpy-1.24.1-cp38-cp38-win_amd64.whl 28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl 84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7 numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl 8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f numpy-1.24.1-cp39-cp39-win32.whl ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e numpy-1.24.1-cp39-cp39-win_amd64.whl ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086 numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl 2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2 numpy-1.24.1.tar.gz ``` ### 1.24 ``` The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There are also a large number of new and expired deprecations due to changes in promotion and cleanups. This might be called a deprecation release. Highlights are - Many new deprecations, check them out. - Many expired deprecations, - New F2PY features and fixes. - New \"dtype\" and \"casting\" keywords for stacking functions. See below for the details, Deprecations Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose The `numpy.fastCopyAndTranspose` function has been deprecated. Use the corresponding copy and transpose methods directly: arr.T.copy() The underlying C function `PyArray_CopyAndTranspose` has also been deprecated from the NumPy C-API. ([gh-22313](https://github.com/numpy/numpy/pull/22313)) Conversion of out-of-bound Python integers Attempting a conversion from a Python integer to a NumPy value will now always check whether the result can be represented by NumPy. This means the following examples will fail in the future and give a `DeprecationWarning` now: np.uint8(-1) np.array([3000], dtype=np.int8) Many of these did succeed before. Such code was mainly useful for unsigned integers with negative values such as `np.uint8(-1)` giving `np.iinfo(np.uint8).max`. Note that conversion between NumPy integers is unaffected, so that `np.array(-1).astype(np.uint8)` continues to work and use C integer overflow logic. ([gh-22393](https://github.com/numpy/numpy/pull/22393)) Deprecate `msort` The `numpy.msort` function is deprecated. Use `np.sort(a, axis=0)` instead. ([gh-22456](https://github.com/numpy/numpy/pull/22456)) `np.str0` and similar are now deprecated The scalar type aliases ending in a 0 bit size: `np.object0`, `np.str0`, `np.bytes0`, `np.void0`, `np.int0`, `np.uint0` as well as `np.bool8` are now deprecated and will eventually be removed. ([gh-22607](https://github.com/numpy/numpy/pull/22607)) Expired deprecations - The `normed` keyword argument has been removed from [np.histogram]{.title-ref}, [np.histogram2d]{.title-ref}, and [np.histogramdd]{.title-ref}. Use `density` instead. If `normed` was passed by position, `density` is now used. ([gh-21645](https://github.com/numpy/numpy/pull/21645)) - Ragged array creation will now always raise a `ValueError` unless `dtype=object` is passed. This includes very deeply nested sequences. ([gh-22004](https://github.com/numpy/numpy/pull/22004)) - Support for Visual Studio 2015 and earlier has been removed. - Support for the Windows Interix POSIX interop layer has been removed. ([gh-22139](https://github.com/numpy/numpy/pull/22139)) - Support for cygwin \< 3.3 has been removed. ([gh-22159](https://github.com/numpy/numpy/pull/22159)) - The mini() method of `np.ma.MaskedArray` has been removed. Use either `np.ma.MaskedArray.min()` or `np.ma.minimum.reduce()`. - The single-argument form of `np.ma.minimum` and `np.ma.maximum` has been removed. Use `np.ma.minimum.reduce()` or `np.ma.maximum.reduce()` instead. ([gh-22228](https://github.com/numpy/numpy/pull/22228)) - Passing dtype instances other than the canonical (mainly native byte-order) ones to `dtype=` or `signature=` in ufuncs will now raise a `TypeError`. We recommend passing the strings `"int8"` or scalar types `np.int8` since the byte-order, datetime/timedelta unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.) ([gh-22540](https://github.com/numpy/numpy/pull/22540)) - The `dtype=` argument to comparison ufuncs is now applied correctly. That means that only `bool` and `object` are valid values and `dtype=object` is enforced. ([gh-22541](https://github.com/numpy/numpy/pull/22541)) - The deprecation for the aliases `np.object`, `np.bool`, `np.float`, `np.complex`, `np.str`, and `np.int` is expired (introduces NumPy 1.20). Some of these will now give a FutureWarning in addition to raising an error since they will be mapped to the NumPy scalars in the future. ([gh-22607](https://github.com/numpy/numpy/pull/22607)) Compatibility notes `array.fill(scalar)` may behave slightly different `numpy.ndarray.fill` may in some cases behave slightly different now due to the fact that the logic is aligned with item assignment: arr = np.array([1]) with any dtype/value arr.fill(scalar) is now identical to: arr[0] = scalar Previously casting may have produced slightly different answers when using values that could not be represented in the target `dtype` or when the target had `object` dtype. ([gh-20924](https://github.com/numpy/numpy/pull/20924)) Subarray to object cast now copies Casting a dtype that includes a subarray to an object will now ensure a copy of the subarray. Previously an unsafe view was returned: arr = np.ones(3, dtype=[("f", "i", 3)]) subarray_fields = arr.astype(object)[0] subarray = subarray_fields[0] "f" field np.may_share_memory(subarray, arr) Is now always false. While previously it was true for the specific cast. ([gh-21925](https://github.com/numpy/numpy/pull/21925)) Returned arrays respect uniqueness of dtype kwarg objects When the `dtype` keyword argument is used with :py`np.array()`{.interpreted-text role="func"} or :py`asarray()`{.interpreted-text role="func"}, the dtype of the returned array now always exactly matches the dtype provided by the caller. In some cases this change means that a *view* rather than the input array is returned. The following is an example for this on 64bit Linux where `long` and `longlong` are the same precision but different `dtypes`: >>> arr = np.array([1, 2, 3], dtype="long") >>> new_dtype = np.dtype("longlong") >>> new = np.asarray(arr, dtype=new_dtype) >>> new.dtype is new_dtype True >>> new is arr False Before the change, the `dtype` did not match because `new is arr` was `True`. ([gh-21995](https://github.com/numpy/numpy/pull/21995)) DLPack export raises `BufferError` When an array buffer cannot be exported via DLPack a `BufferError` is now always raised where previously `TypeError` or `RuntimeError` was raised. This allows falling back to the buffer protocol or `__array_interface__` when DLPack was tried first. ([gh-22542](https://github.com/numpy/numpy/pull/22542)) NumPy builds are no longer tested on GCC-6 Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available on Ubuntu 20.04, so builds using that compiler are no longer tested. We still test builds using GCC-7 and GCC-8. ([gh-22598](https://github.com/numpy/numpy/pull/22598)) New Features New attribute `symbol` added to polynomial classes The polynomial classes in the `numpy.polynomial` package have a new `symbol` attribute which is used to represent the indeterminate of the polynomial. This can be used to change the value of the variable when printing: >>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y") >>> print(P_y) 1.0 + 0.0·y¹ - 1.0·y² Note that the polynomial classes only support 1D polynomials, so operations that involve polynomials with different symbols are disallowed when the result would be multivariate: >>> P = np.polynomial.Polynomial([1, -1]) default symbol is "x" >>> P_z = np.polynomial.Polynomial([1, 1], symbol="z") >>> P * P_z Traceback (most recent call last) ... ValueError: Polynomial symbols differ The symbol can be any valid Python identifier. The default is `symbol=x`, consistent with existing behavior. ([gh-16154](https://github.com/numpy/numpy/pull/16154)) F2PY support for Fortran `character` strings F2PY now supports wrapping Fortran functions with: - character (e.g. `character x`) - character array (e.g. `character, dimension(n) :: x`) - character string (e.g. `character(len=10) x`) - and character string array (e.g. `character(len=10), dimension(n, m) :: x`) arguments, including passing Python unicode strings as Fortran character string arguments. ([gh-19388](https://github.com/numpy/numpy/pull/19388)) New function `np.show_runtime` A new function `numpy.show_runtime` has been added to display the runtime information of the machine in addition to `numpy.show_config` which displays the build-related information. ([gh-21468](https://github.com/numpy/numpy/pull/21468)) `strict` option for `testing.assert_array_equal` The `strict` option is now available for `testing.assert_array_equal`. Setting `strict=True` will disable the broadcasting behaviour for scalars and ensure that input arrays have the same data type. ([gh-21595](https://github.com/numpy/numpy/pull/21595)) New parameter `equal_nan` added to `np.unique` `np.unique` was changed in 1.21 to treat all `NaN` values as equal and return a single `NaN`. Setting `equal_nan=False` will restore pre-1.21 behavior to treat `NaNs` as unique. Defaults to `True`. ([gh-21623](https://github.com/numpy/numpy/pull/21623)) `casting` and `dtype` keyword arguments for `numpy.stack` The `casting` and `dtype` keyword arguments are now available for `numpy.stack`. To use them, write `np.stack(..., dtype=None, casting='same_kind')`. `casting` and `dtype` keyword arguments for `numpy.vstack` The `casting` and `dtype` keyword arguments are now available for `numpy.vstack`. To use them, write `np.vstack(..., dtype=None, casting='same_kind')`. `casting` and `dtype` keyword arguments for `numpy.hstack` The `casting` and `dtype` keyword arguments are now available for `numpy.hstack`. To use them, write `np.hstack(..., dtype=None, casting='same_kind')`. ([gh-21627](https://github.com/numpy/numpy/pull/21627)) The bit generator underlying the singleton RandomState can be changed The singleton `RandomState` instance exposed in the `numpy.random` module is initialized at startup with the `MT19937` bit generator. The new function `set_bit_generator` allows the default bit generator to be replaced with a user-provided bit generator. This function has been introduced to provide a method allowing seamless integration of a high-quality, modern bit generator in new code with existing code that makes use of the singleton-provided random variate generating functions. The companion function `get_bit_generator` returns the current bit generator being used by the singleton `RandomState`. This is provided to simplify restoring the original source of randomness if required. The preferred method to generate reproducible random numbers is to use a modern bit generator in an instance of `Generator`. The function `default_rng` simplifies instantiation: >>> rg = np.random.default_rng(3728973198) >>> rg.random() The same bit generator can then be shared with the singleton instance so that calling functions in the `random` module will use the same bit generator: >>> orig_bit_gen = np.random.get_bit_generator() >>> np.random.set_bit_generator(rg.bit_generator) >>> np.random.normal() The swap is permanent (until reversed) and so any call to functions in the `random` module will use the new bit generator. The original can be restored if required for code to run correctly: >>> np.random.set_bit_generator(orig_bit_gen) ([gh-21976](https://github.com/numpy/numpy/pull/21976)) `np.void` now has a `dtype` argument NumPy now allows constructing structured void scalars directly by passing the `dtype` argument to `np.void`. ([gh-22316](https://github.com/numpy/numpy/pull/22316)) Improvements F2PY Improvements - The generated extension modules don\'t use the deprecated NumPy-C API anymore - Improved `f2py` generated exception messages - Numerous bug and `flake8` warning fixes - various CPP macros that one can use within C-expressions of signature files are prefixed with `f2py_`. For example, one should use `f2py_len(x)` instead of `len(x)` - A new construct `character(f2py_len=...)` is introduced to support returning assumed length character strings (e.g. `character(len=*)`) from wrapper functions A hook to support rewriting `f2py` internal data structures after reading all its input files is introduced. This is required, for instance, for BC of SciPy support where character arguments are treated as character strings arguments in `C` expressions. ([gh-19388](https://github.com/numpy/numpy/pull/19388)) IBM zSystems Vector Extension Facility (SIMD) Added support for SIMD extensions of zSystem (z13, z14, z15), through the universal intrinsics interface. This support leads to performance improvements for all SIMD kernels implemented using the universal intrinsics, including the following operations: rint, floor, trunc, ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal, not_equal, greater, greater_equal, less, less_equal, maximum, minimum, fmax, fmin, argmax, argmin, add, subtract, multiply, divide. ([gh-20913](https://github.com/numpy/numpy/pull/20913)) NumPy now gives floating point errors in casts In most cases, NumPy previously did not give floating point warnings or errors when these happened during casts. For examples, casts like: np.array([2e300]).astype(np.float32) overflow for float32 np.array([np.inf]).astype(np.int64) Should now generally give floating point warnings. These warnings should warn that floating point overflow occurred. For errors when converting floating point values to integers users should expect invalid value warnings. Users can modify the behavior of these warnings using `np.errstate`. Note that for float to int casts, the exact warnings that are given may be platform dependent. For example: arr = np.full(100, value=1000, dtype=np.float64) arr.astype(np.int8) May give a result equivalent to (the intermediate cast means no warning is given): arr.astype(np.int64).astype(np.int8) May return an undefined result, with a warning set: RuntimeWarning: invalid value encountered in cast The precise behavior is subject to the C99 standard and its implementation in both software and hardware. ([gh-21437](https://github.com/numpy/numpy/pull/21437)) F2PY supports the value attribute The Fortran standard requires that variables declared with the `value` attribute must be passed by value instead of reference. F2PY now supports this use pattern correctly. So `integer, intent(in), value :: x` in Fortran codes will have correct wrappers generated. ([gh-21807](https://github.com/numpy/numpy/pull/21807)) Added pickle support for third-party BitGenerators The pickle format for bit generators was extended to allow each bit generator to supply its own constructor when during pickling. Previous versions of NumPy only supported unpickling `Generator` instances created with one of the core set of bit generators supplied with NumPy. Attempting to unpickle a `Generator` that used a third-party bit generators would fail since the constructor used during the unpickling was only aware of the bit generators included in NumPy. ([gh-22014](https://github.com/numpy/numpy/pull/22014)) arange() now explicitly fails with dtype=str Previously, the `np.arange(n, dtype=str)` function worked for `n=1` and `n=2`, but would raise a non-specific exception message for other values of `n`. Now, it raises a [TypeError]{.title-ref} informing that `arange` does not support string dtypes: >>> np.arange(2, dtype=str) Traceback (most recent call last) ... TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>. ([gh-22055](https://github.com/numpy/numpy/pull/22055)) `numpy.typing` protocols are now runtime checkable The protocols used in `numpy.typing.ArrayLike` and `numpy.typing.DTypeLike` are now properly marked as runtime checkable, making them easier to use for runtime type checkers. ([gh-22357](https://github.com/numpy/numpy/pull/22357)) Performance improvements and changes Faster version of `np.isin` and `np.in1d` for integer arrays `np.in1d` (used by `np.isin`) can now switch to a faster algorithm (up to \>10x faster) when it is passed two integer arrays. This is often automatically used, but you can use `kind="sort"` or `kind="table"` to force the old or new method, respectively. ([gh-12065](https://github.com/numpy/numpy/pull/12065)) Faster comparison operators The comparison functions (`numpy.equal`, `numpy.not_equal`, `numpy.less`, `numpy.less_equal`, `numpy.greater` and `numpy.greater_equal`) are now much faster as they are now vectorized with universal intrinsics. For a CPU with SIMD extension AVX512BW, the performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and boolean data types, respectively (with N=50000). ([gh-21483](https://github.com/numpy/numpy/pull/21483)) Changes Better reporting of integer division overflow Integer division overflow of scalars and arrays used to provide a `RuntimeWarning` and the return value was undefined leading to crashes at rare occasions: >>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1) <stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32) Integer division overflow now returns the input dtype\'s minimum value and raise the following `RuntimeWarning`: >>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1) <stdin>:1: RuntimeWarning: overflow encountered in floor_divide array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648], dtype=int32) ([gh-21506](https://github.com/numpy/numpy/pull/21506)) `masked_invalid` now modifies the mask in-place When used with `copy=False`, `numpy.ma.masked_invalid` now modifies the input masked array in-place. This makes it behave identically to `masked_where` and better matches the documentation. ([gh-22046](https://github.com/numpy/numpy/pull/22046)) `nditer`/`NpyIter` allows all allocating all operands The NumPy iterator available through `np.nditer` in Python and as `NpyIter` in C now supports allocating all arrays. The iterator shape defaults to `()` in this case. The operands dtype must be provided, since a \"common dtype\" cannot be inferred from the other inputs. ([gh-22457](https://github.com/numpy/numpy/pull/22457)) Checksums MD5 1f08c901040ebe1324d16cfc71fe3cd2 numpy-1.24.0rc1-cp310-cp310-macosx_10_9_x86_64.whl d35a59a1ccf1542d690860ad85fbb0f0 numpy-1.24.0rc1-cp310-cp310-macosx_11_0_arm64.whl c7db37964986d7b9756fd1aa077b7e72 numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 72c2dad61fc86c4d87e23d0de975e0b6 numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3c769f1089253266d7a522144696bde3 numpy-1.24.0rc1-cp310-cp310-win32.whl 96226a2045063b9caff40fe2a2098e72 numpy-1.24.0rc1-cp310-cp310-win_amd64.whl b20897446f52e7fcde80e12c7cc1dc1e numpy-1.24.0rc1-cp311-cp311-macosx_10_9_x86_64.whl 9cafe21759e90c705533d1f3201d35aa numpy-1.24.0rc1-cp311-cp311-macosx_11_0_arm64.whl 0e8621d07dae7ffaba6cfe83f7288042 numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0c67808eed6ba6f9e9074e6f11951f09 numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1065bea5d0670360353e698093954e35 numpy-1.24.0rc1-cp311-cp311-win32.whl fe2122ec86b45e00b648071ee2931fbc numpy-1.24.0rc1-cp311-cp311-win_amd64.whl ab3e8424a04338d43ed466ade66de7a8 numpy-1.24.0rc1-cp38-cp38-macosx_10_9_x86_64.whl fc6eac08a59c4efb3962d990ff94f2b7 numpy-1.24.0rc1-cp38-cp38-macosx_11_0_arm64.whl 3498ac93ae6abba813e5d76f86ae5356 numpy-1.24.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 629ce4b8cb011ff735ebd482fbf51702 numpy-1.24.0rc1-cp38-cp38-win32.whl cb503a78e27f0f46b6b43d211275dc58 numpy-1.24.0rc1-cp38-cp38-win_amd64.whl ffccdb9750336f5e55ab90c8eb7c1a8d numpy-1.24.0rc1-cp39-cp39-macosx_10_9_x86_64.whl 9751b9f833238a7309ad4e6b43fa8cb5 numpy-1.24.0rc1-cp39-cp39-macosx_11_0_arm64.whl cb8a10f411773f0ac5e06df067599d45 numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8d670816134824972afb512498b95ede numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 60687b97ab720f6be9e3542e5761769f numpy-1.24.0rc1-cp39-cp39-win32.whl 11fd99748acc0726ac164034c32bb3cd numpy-1.24.0rc1-cp39-cp39-win_amd64.whl 09e1d6f6d75facaf84d2b87a33874d4b numpy-1.24.0rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 2da9ad07343b410aca4edf1285e4266b numpy-1.24.0rc1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9a0e466a55632cc1d67db119f586cd05 numpy-1.24.0rc1-pp38-pypy38_pp73-win_amd64.whl abc863895b02cdcc436474f6cdf2d14d numpy-1.24.0rc1.tar.gz SHA256 36acf6043b94a0e8af75d0a1931678d20e673b83fd79798c805ebc995e233cff numpy-1.24.0rc1-cp310-cp310-macosx_10_9_x86_64.whl 244c2c22f776e168e1060112f87717d73df2462e0eba4095a7673fe87db49b7a numpy-1.24.0rc1-cp310-cp310-macosx_11_0_arm64.whl 730112e692c165e8ad69071c70653522ee19d8c8af2da839339de01013eeef24 numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 960b0d980adfa5c37fea89fc556bb482f9d957a3188be46d03a00fa1bd8f617b numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f54788f1a6941cb1b57bcf5ff09a281e5db75bbf9f2ac9534a626128ded0244f numpy-1.24.0rc1-cp310-cp310-win32.whl 07fef63a5113969d7897589928870c57dd3e28671d617f688486f12c3a3b466a numpy-1.24.0rc1-cp310-cp310-win_amd64.whl aea88e02d9335052172f4d6c8163721c3edd086ea3bf3bc9b6d5c55661540f1b numpy-1.24.0rc1-cp311-cp311-macosx_10_9_x86_64.whl 3950be11c03d250ea780280ce37a6fe7bd21dafcb478e08190c72b6c58ed7d18 numpy-1.24.0rc1-cp311-cp311-macosx_11_0_arm64.whl 743c30cda228f8be9fe552453870b412b38ac232972c617a0f18765dedf395a5 numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl cab1335b70e24e88ef2b9f727b9f5fc6e0d31d9fe9da0213f6c28cf615b65db0 numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5283759f0dd905f9e62ed55775345fbb233a53146ceaf2f75e96d939f564ee79 numpy-1.24.0rc1-cp311-cp311-win32.whl 427bd9c45777e8baf782b6b33ebc26a88716c2d9b76b0474987660c2c066dca0 numpy-1.24.0rc1-cp311-cp311-win_amd64.whl 20edfad312395d1cb8ad6ca5d2c42d2dab057f5d1920af3f94c7a72103335d8a numpy-1.24.0rc1-cp38-cp38-macosx_10_9_x86_64.whl 79134b92e1fb86915369753b3e64a359416cd98ea2329d270eb4e1d0ab300c0d numpy-1.24.0rc1-cp38-cp38-macosx_11_0_arm64.whl 6f00858573e2316ac5d190cf81dc178d94579969f827ac34c7a53110428e6f72 numpy-1.24.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a8d6f78be3ad0bd9b4adecba2fda570ef491ae69f8c7cc84acd382802a81e242 numpy-1.24.0rc1-cp38-cp38-win32.whl f1f5fa912df64dd48ec55352b72f4b036ab7b3911e996703f436e17baca780f9 numpy-1.24.0rc1-cp38-cp38-win_amd64.whl 8d149b3c3062dc68e29bdb244edc30c5d80e2c654b5c27c32773bf7354452b48 numpy-1.24.0rc1-cp39-cp39-macosx_10_9_x86_64.whl d177fbd4d22248640d73f07c3aac2cc1f79c412f61564452abd08606ee5e3713 numpy-1.24.0rc1-cp39-cp39-macosx_11_0_arm64.whl 05faa4ecb98d7bc593afc5b10c25f0e7dd65244b653756b083c605fbf60b9b67 numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 06d8827c6fa511b61047376efc3a677d447193bf88e6bbde35b4e5223a4b58d6 numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 15605b92bf10b10e110a9c0f1c4ef6cd58246532c62a0c3d3188c05e69cdcdb6 numpy-1.24.0rc1-cp39-cp39-win32.whl 8046f5c23769791be8432a592b9881984e0e4abc7f552c7e5c349420a27323e7 numpy-1.24.0rc1-cp39-cp39-win_amd64.whl aa9c4a2f65d669e6559123154da944ad6bd7605cbba5cce81bf6794617870510 numpy-1.24.0rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl e44fd1bdfa50979ddec76318e21abc82ee3858e5f45dfc5153b6f660d9d29851 numpy-1.24.0rc1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1802199d70d9f8ac11eb63a1ef50d33915b78a84bacacaadb2896175005103d4 numpy-1.24.0rc1-pp38-pypy38_pp73-win_amd64.whl d601180710004799acb8f80e564b84e71490fac9d84e115e2f5b0f6709754f16 numpy-1.24.0rc1.tar.gz ``` ### 1.23.5 ``` the 1.23.4 release and keeps the build infrastructure current. The Python versions supported for this release are 3.8-3.11. Contributors A total of 7 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - \DWesl - Aayush Agrawal + - Adam Knapp + - Charles Harris - Navpreet Singh + - Sebastian Berg - Tania Allard Pull requests merged A total of 10 pull requests were merged for this release. - [22489](https://github.com/numpy/numpy/pull/22489): TST, MAINT: Replace most setup with setup_method (also teardown) - [22490](https://github.com/numpy/numpy/pull/22490): MAINT, CI: Switch to cygwin/cygwin-install-actionv2 - [22494](https://github.com/numpy/numpy/pull/22494): TST: Make test_partial_iteration_cleanup robust but require leak\... - [22592](https://github.com/numpy/numpy/pull/22592): MAINT: Ensure graceful handling of large header sizes - [22593](https://github.com/numpy/numpy/pull/22593): TYP: Spelling alignment for array flag literal - [22594](https://github.com/numpy/numpy/pull/22594): BUG: Fix bounds checking for `random.logseries` - [22595](https://github.com/numpy/numpy/pull/22595): DEV: Update GH actions and Dockerfile for Gitpod - [22596](https://github.com/numpy/numpy/pull/22596): CI: Only fetch in actions/checkout - [22597](https://github.com/numpy/numpy/pull/22597): BUG: Decrement ref count in gentype_reduce if allocated memory\... - [22625](https://github.com/numpy/numpy/pull/22625): BUG: Histogramdd breaks on big arrays in Windows Checksums MD5 8a412b79d975199cefadb465279fd569 numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl 1b56e8e6a0516c78473657abf0710538 numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl c787f4763c9a5876e86a17f1651ba458 numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl db07645022e56747ba3f00c2d742232e numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c63a6fb7cc16a13aabc82ec57ac6bb4d numpy-1.23.5-cp310-cp310-win32.whl 3fea9247e1d812600015641941fa273f numpy-1.23.5-cp310-cp310-win_amd64.whl 4222cfb36e5ac9aec348c81b075e2c05 numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl 6c7102f185b310ac70a62c13d46f04e6 numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl 6b7319f66bf7ac01b49e2a32470baf28 numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3c60928ddb1f55163801f06ac2229eb0 numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6936b6bcfd6474acc7a8c162a9393b3c numpy-1.23.5-cp311-cp311-win32.whl 6c9af68b7b56c12c913678cafbdc44d6 numpy-1.23.5-cp311-cp311-win_amd64.whl 699daeac883260d3f182ae4bbbd9bbd2 numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl 6c233a36339de0652139e78ef91504d4 numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl 57d5439556ab5078c91bdeffd9c0036e numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a8045b59187f2e0ccd4294851adbbb8a numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7f38f7e560e4bf41490372ab84aa7a38 numpy-1.23.5-cp38-cp38-win32.whl 76095726ba459d7f761b44acf2e56bd1 numpy-1.23.5-cp38-cp38-win_amd64.whl 174befd584bc1b03ed87c8f0d149a58e numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl 9cbac793d77278f5d27a7979b64f6b5b numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl 6e417b087044e90562183b33f3049b09 numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 54fa63341eaa6da346d824399e8237f6 numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cc14d62a158e99c57f925c86551e45f0 numpy-1.23.5-cp39-cp39-win32.whl bad36b81e7e84bd7a028affa0659d235 numpy-1.23.5-cp39-cp39-win_amd64.whl b4d17d6b79a8354a2834047669651963 numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 89f6dc4a4ff63fca6af1223111cd888d numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 633d574a35b8592bab502ef569b0731e numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl 8b2692a511a3795f3af8af2cd7566a15 numpy-1.23.5.tar.gz SHA256 9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63 numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl 7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43 numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1 numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280 numpy-1.23.5-cp310-cp310-win32.whl dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6 numpy-1.23.5-cp310-cp310-win_amd64.whl ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96 numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl 56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl 5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2 numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387 numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0 numpy-1.23.5-cp311-cp311-win32.whl 0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d numpy-1.23.5-cp311-cp311-win_amd64.whl f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl 0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9 numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl 92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398 numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07 numpy-1.23.5-cp38-cp38-win32.whl ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e numpy-1.23.5-cp38-cp38-win_amd64.whl 8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719 numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481 numpy-1.23.5-cp39-cp39-win32.whl 09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df numpy-1.23.5-cp39-cp39-win_amd64.whl abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8 numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135 numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 01dd17cbb340bf0fc23981e52e1