Deltares / Ribasim-NL

Ribasim water resources modeling in the Netherlands
https://ribasim.nl/
MIT License
4 stars 0 forks source link

Afleiding Qh-relatie bergend vrijafwaterend #97

Open gijsber opened 5 months ago

gijsber commented 5 months ago

Generieke functie om Qh bergend gebied af te leiden obv methodiek vd Gaast. Indien nodig verder te schalen met #108.

Van der Gaast bepaalt een theoretische relatie tussen GxG, maatgevende afvoer en drooglegging, waarmee je in theorie een Q(h) relatie kunt afleiden voor bergend gebied. Benodigd:

Omdat vd Gaast GxG kaarten significant afwijken van GxG kaarten geproduceert met LHM4.3 stellen wij voor om, voor nu, GxG kaarten uit NHI te gebruiken. Bij gebrek aan alternatief kunnen we de Maatgevende afvoeren en kwel/wegzijging uit VdGaast blijven gebruiken. Om GxG uit LHM4.3 om te rekenen naar m NAP, tevens nodig:

Voor de toekomst sowieso een aanbeveling om (te proberen) Q(h)-relaties voor oppervlaktewater af te leiden uit (versimpelde) oppervlakterelaties berekend uit DAMO + drainagegegevens.

DanielTollenaar commented 4 months ago

VdGaast lijkt de GxG kaarten te gebruiken die je hier kunt downloaden: https://library.wur.nl/WebQuery/edepot/555186. Wat opmerkingen:

  1. we zien GIS artefacten (wellicht grenzen BOFEK kaartbladen?) met behoorlijke impact op geschatte GxG (zie hieronder)
  2. afwijkingen GxG met LHM4.3 zijn aanzienlijk (orde meter)

image

Huite commented 4 months ago

Nog wat willekeurige opmerkingen van mijn zijde:

  1. De harde grenzen zijn inderdaad BOFEK / bodemkaart grenzen van polygonen, aangezien de relaties per polygoon worden bepaald en dan uitgerekend.
  2. Binnen 250 m cellen (LHM) kan nog behoorlijk wat variatie optreden door sloten.
  3. Overigens neemt karteerbare kenmerken ook geen sloten mee.
  4. Ten overvloede: Ik denk dat LHM GLG's niet een aantrekkelijke bron zijn, omdat je dan een kip-en-ei kwestie krijgt voor de parametrisatie.
  5. Qua ruimtelijke indeling van GxG's zou je eigenlijk willen dat het slotenpatroon meegenomen wordt, vermoedelijk heeft dat een invloed. Jacco (Hoogewoud) en ik hebben daar in het verleden wat mee gewerkt in het kader van neerschaling van LHM resultaat door MODFLOW sommen te draaien en weer te aggregeren en te corrigeren (soortevan met grondwateraanvulling) totdat het aggregeerde resultaat klopt -- ontzettend gedoe. Ik denk nu dat een betere benadering zou zijn de grondwaterstand per pixel als parabolische of elliptische functie van afstand tot dichtstbijzijnde sloot te zien. Met scipy distance_transform_edt is het een fluitje van een cent om voor elke pixel afstand te berekenen. Vervolgens alsnog itereren met correctie totdat het in aggregaat weer klopt.
  6. Zou methode 5 sowieso nog eens uit willen werken; lijkt mij simpel voor neerschaling LHM data, maar wordt met meetgegevens al weer een hele exercitie.
  7. Voor Q-h is denk ik sowieso een Basin geaggregeerde GxG nodig, dus zo lang die redelijk is, maken scherpe grenzen niet uit?
  8. Anders een convolutie eroverheen gooien om het wat te vergladden alvorens te aggregeren.
gijsber commented 4 months ago

LHM43 resultaten (GhG, GlG en GvG) en maaiveld staan in IDF formaat op thegood.cloud/Ribasim modeldata/Basisgegevens/LHM/4.3/GxG.

DanielTollenaar commented 4 months ago

Tabel van VdGaast is gereproduceerd met een paar regels Python-code op basis van gebiedsgemiddelde MA, Kwel en GxG (code ook in repos):

https://github.com/Deltares/Ribasim-NL/blob/243aca4064d521ef0d75a42daa9d753a7a552564/notebooks/vdgaast/repro_vdgaast.py#L82-L91

D4 en D6 zijn o.i. een beetje tricky; GLG en GLG-100cm liggen zomaar flink onder slootbodem. Zou een TabulatedRatingCurve geven met een h ónder de de laatste h van het Basin / profile

DanielTollenaar commented 4 months ago

Zoals besproken 16/7:

Verder, Q(h) profiel aan laten sluiten op A(h) profiel; bereik h = min(bodemhoogte) - min(maaiveldhoogte)