import pandas as pd
def preprocess_string(input_string):
# Add your string pre-processing logic here
# For example, let's convert the string to uppercase
processed_string = f'"{input_string}"'
return processed_string
def read_specific_column(input_file, column_name, output_file):
try:
# Read the CSV file into a pandas DataFrame
df = pd.read_csv(input_file, encoding_errors="ignore")
# Get the specific column
specific_column = df[column_name]
# Preprocess the strings in the column
processed_column = specific_column.apply(preprocess_string)
# Save the processed column to another CSV file
processed_df = pd.DataFrame({column_name: processed_column})
processed_df.to_csv(output_file, index=False)
print(f"Successfully processed the column '{column_name}' and saved to '{output_file}'.")
except Exception as e:
print(f"An error occurred: {e}")
if __name__ == "__main__":
input_file = "input.csv" # Replace with your input CSV file path
output_file = "output.csv" # Replace with your output CSV file path
column_name = "columnName" # Replace with the name of the column you want to process
read_specific_column(input_file, column_name, output_file)