Closed csmangum closed 4 months ago
Storing edges directly within nodes in a graph structure, rather than maintaining a centralized edge list, is not the most common approach in traditional graph implementations and libraries (like NetworkX, igraph, or Graph-tool). These libraries typically use a centralized structure to manage edges for several reasons:
However, there are scenarios where storing edges within nodes might be beneficial, especially in specialized or custom graph implementations:
When considering whether to store edges within nodes, weigh the following:
Agent-based simulations or models, where each agent (node) maintains its state and interactions (edges), could benefit from storing edges within nodes. Here’s a simple example in an agent-based simulation context:
class Agent:
def __init__(self, identifier):
self.id = identifier
self.out_edges = {} # Interactions initiated by this agent
self.in_edges = {} # Interactions received by this agent
self.state = {} # Agent's state information
def add_out_edge(self, target, **attributes):
self.out_edges[target] = attributes
def add_in_edge(self, source, **attributes):
self.in_edges[source] = attributes
def remove_out_edge(self, target):
if target in self.out_edges:
del self.out_edges[target]
def remove_in_edge(self, source):
if source in self.in_edges:
del self.in_edges[source]
def get_out_edges(self):
return self.out_edges.items()
def get_in_edges(self):
return self.in_edges.items()
def update_state(self, **state_info):
self.state.update(state_info)
def get_state(self):
return self.state
class Simulation:
def __init__(self):
self.agents = {}
def add_agent(self, identifier):
if identifier not in self.agents:
self.agents[identifier] = Agent(identifier)
def add_interaction(self, source, target, **attributes):
self.add_agent(source)
self.add_agent(target)
self.agents[source].add_out_edge(target, **attributes)
self.agents[target].add_in_edge(source, **attributes)
def remove_interaction(self, source, target):
if source in self.agents and target in self.agents:
self.agents[source].remove_out_edge(target)
self.agents[target].remove_in_edge(source)
def get_agent(self, identifier):
return self.agents.get(identifier)
def get_agent_state(self, identifier):
agent = self.get_agent(identifier)
if agent:
return agent.get_state()
return None
def update_agent_state(self, identifier, **state_info):
agent = self.get_agent(identifier)
if agent:
agent.update_state(**state_info)
# Example usage
sim = Simulation()
sim.add_agent('Agent1')
sim.add_agent('Agent2')
sim.add_interaction('Agent1', 'Agent2', type='communication', timestamp='2024-06-26T12:00:00Z')
# Update state of Agent1
sim.update_agent_state('Agent1', health=100, position=(0, 0))
# Access state and edges of Agent1
agent1 = sim.get_agent('Agent1')
if agent1:
print("State of Agent1:", agent1.get_state())
print("Outgoing interactions of Agent1:", list(agent1.get_out_edges()))
print("Incoming interactions of Agent1:", list(agent1.get_in_edges()))
Storing edges within nodes is not the most common approach but can be appropriate for specific scenarios. Carefully consider the trade-offs and ensure you have robust mechanisms for maintaining consistency and managing complexity.
Maybe call it NodeWeb
Finished in AnarchyGraph
Where the nodes/objects stored their own edges and the system is not centrally managed.