Open Lily1992 opened 5 years ago
Please show the full log
(venv) F:\CL_wiscom\OneStage_objectDetection\CenterNet-CenterNet_pytorch_win10>python demo.py
C:\Users\pc\Anaconda3\lib\site-packages\h5py__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from float
to np.floating
is deprecated. In future, it will be treated as np.float64 == np.dtype(flo at).type
.
from ._conv import register_converters as _register_converters
loading from cache file: cache\coco_val2014.pkl
loading annotations into memory...
Done (t=0.22s)
creating index...
index created!
module_file: models.CenterNet-104
total parameters: 209955020
loading from F:\CL_wiscom\OneStage_objectDetection\CenterNet-CenterNet_pytorch_win10\test..\cache\nnet\CenterNet-104\CenterNet-104_23000.pkl
0%| | 0/2 [00:00<?, ?it/s]C
:\Users\pc\Anaconda3\lib\site-packages\torch\nn\modules\upsampling.py:129: UserWarning: nn.Upsample is deprecated. Use nn.functional.interpolate instead.
warnings.warn("nn.{} is deprecated. Use nn.functional.interpolate instead.".format(self.name))
Traceback (most recent call last):
File "demo.py", line 15, in
(venv) F:\CL_wiscom\OneStage_objectDetection\CenterNet-CenterNet_pytorch_win10>python test.py CenterNet-104 --suffix multi_scale
C:\Users\pc\Anaconda3\lib\site-packages\h5py__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from float
to np.floating
is deprecated. In future, it will be treated as np.float64 == np.dtype(flo at).type
.
from ._conv import register_converters as _register_converters
cfg_file: config\CenterNet-104-multi_scale.json
loading all datasets...
2 GPUs
split: validation
loading from cache file: cache\coco_val.pkl
loading annotations into memory...
Done (t=0.11s)
creating index...
index created!
system config...
{'batch_size': 2,
'cache_dir': 'cache',
'chunk_sizes': [1, 1],
'config_dir': 'config',
'data_dir': 'F:/DATAset',
'data_rng': <mtrand.RandomState object at 0x000001E4CEAEA798>,
'dataset': 'MSCOCO',
'decay_rate': 10,
'display': 100,
'learning_rate': 2.5e-05,
'max_iter': 50000,
'nnet_rng': <mtrand.RandomState object at 0x000001E4CEAEA7E0>,
'opt_algo': 'adam',
'prefetch_size': 10,
'pretrain': None,
'result_dir': 'results',
'sampling_function': 'kp_detection',
'snapshot': 1000,
'snapshot_name': 'CenterNet-104',
'stepsize': 45000,
'test_split': 'testing',
'train_split': 'training',
'val_iter': 100,
'val_split': 'validation',
'weight_decay': False,
'weight_decay_rate': 1e-05,
'weight_decay_type': 'l2'}
db config...
{'ae_threshold': 0.5,
'border': 128,
'categories': 10,
'data_aug': True,
'gaussian_bump': True,
'gaussian_iou': 0.7,
'gaussian_radius': -1,
'input_size': [511, 511],
'kp_categories': 1,
'lighting': True,
'max_per_image': 100,
'merge_bbox': True,
'nms_algorithm': 'exp_soft_nms',
'nms_kernel': 3,
'nms_threshold': 0.5,
'output_sizes': [[128, 128]],
'rand_color': True,
'rand_crop': True,
'rand_pushes': False,
'rand_samples': False,
'rand_scale_max': 1.4,
'rand_scale_min': 0.6,
'rand_scale_step': 0.1,
'rand_scales': array([0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2, 1.3]),
'special_crop': False,
'test_scales': [0.6, 1, 1.2, 1.5, 1.8],
'top_k': 70,
'weight_exp': 10}
loading parameters at iteration: 23000
building neural network...
module_file: models.CenterNet-104
total parameters: 209955020
loading parameters...
loading model from cache\nnet\CenterNet-104\CenterNet-104_23000.pkl
locating kps: 0%| | 0/3444 [00:00<?, ?it/s]C:\Users\pc\Anaconda3\lib\site-packages\torch\nn\modules\upsampling.py:129: UserWarning: nn.Upsample is deprecated. Use nn.functional.interpolate ins
tead.
warnings.warn("nn.{} is deprecated. Use nn.functional.interpolate instead.".format(self.name))
Traceback (most recent call last):
File "test.py", line 113, in
@Lily1992 Hi, multi_scale testing needs large GPU memory, Titan X works for it. Or you can reduce the 'test_scales' in config/CenterNet-xxx-multi_scale.json. For example, modify "test_scales": [0.6, 1, 1.2, 1.5].
when I run test.py use my dataset,CUDA error: out of memory , how to solve it. My GPU is GTX1080TI 11G,the batch is 1,and chunk size is [1].