Closed ETA444 closed 7 months ago
Implementation Summary:
The implementation of the multicollinearity
method within the explore_num()
function is designed to check for multicollinearity among the numerical variables in a DataFrame. This is done using the Variance Inflation Factor (VIF). Multicollinearity can impact the stability and interpretability of regression models, and this method helps to identify such issues.
Code Breakdown:
def explore_num(
df: pd.DataFrame,
numerical_variables: List[str],
method: str = 'all',
output: str = 'print',
threshold_z: int = 3
) -> Optional[str]:
"""
Analyze numerical variables in a DataFrame for distribution characteristics, outlier detection, normality tests, skewness, kurtosis, correlation analysis, and multicollinearity detection.
# Full docstring continues...
"""
explore_num()
function analyzes numerical variables in a DataFrame.df
), a list of numerical variables (numerical_variables
), a method (method
), an output format (output
), and a threshold for Z-score outliers (threshold_z
).if method.lower() in ['multicollinearity', 'all']:
# use non-na df: data
data = df.copy()
data = data[numerical_variables].dropna()
vifs = calculate_vif(data, numerical_variables)
result.append(f"\n<<______MULTICOLLINEARITY CHECK - VIF______>>\n")
result.append(f"Variance Inflation Factors:\n{vifs.to_string()}\n")
result.append("☻ Tip: VIF > 10 indicates potential multicollinearity concerns.")
calculate_vif()
is used to calculate the Variance Inflation Factor for the numerical variables.result
), with a tip indicating potential concerns if the VIF exceeds 10.combined_result = "\n".join(result)
if output.lower() == 'print':
print(combined_result)
if method.lower() == 'multicollinearity':
return vifs
elif output.lower() == 'return':
if method.lower() in ['all', 'multicollinearity']:
return combined_result
if method.lower() == 'multicollinearity':
return vifs
output
parameter, the results are either printed or returned. For the multicollinearity
method, the VIF DataFrame is returned when output
is set to 'return'
.See the Full Function:
The full implementation can be found in the datasafari repository.
Description:
Method Functionality Idea:
The
multicollinearity
method checks for multicollinearity among numerical variables using Variance Inflation Factors (VIF). Multicollinearity occurs when independent variables in a regression model are highly correlated with each other, leading to issues with parameter estimation and interpretation.How it operates:
The method first prepares the data by removing missing values. Then, it calculates the VIF for each numerical variable using the
calculate_vif
function. The VIF measures how much the variance of an estimated regression coefficient is inflated due to multicollinearity. Higher VIF values indicate stronger multicollinearity concerns. The method returns a DataFrame displaying the VIF values for each numerical variable.Usage:
To check for multicollinearity among numerical variables using VIF:
This method returns a DataFrame containing the VIF values for each numerical variable.
Example:
Notes: