Closed ETA444 closed 7 months ago
Implementation Summary:
The 'encode_ordinal'
method within transform_cat()
maps categorical values to integers based on an order defined in ordinal_map
. This method is suitable for ordinal data where the order of categories is meaningful.
Purpose:
The purpose of this method is to prepare categorical data for machine learning models by representing each category as an integer, which is important for ordinal data where the order of categories carries significance.
Code Breakdown:
Method Header:
'encode_ordinal'
method implementation and provide context.if method.lower() == 'encode_ordinal' and ordinal_map:
print(f"< ORDINAL ENCODING TRANSFORMATION >")
print(f" This method assigns an integer to each category value based on the provided ordinal order.")
print(f"✎ Note: Ensure the provided ordinal map correctly reflects the desired order of categories for each variable.")
print("☻ Tip: An ordinal map dictionary looks like this: {'your_variable': ['level1', 'level2', 'level3'], ...}\n")
Initialize DataFrame:
transformed_df = df.copy()
encoded_columns = pd.DataFrame()
Encode Each Variable:
for variable, order in ordinal_map.items():
if variable in categorical_variables:
# Prepare data for OrdinalEncoder
data = transformed_df[[variable]].apply(lambda x: pd.Categorical(x, categories=order, ordered=True))
transformed_df[variable] = data.apply(lambda x: x.cat.codes)
# Keep track of the newly encoded columns
encoded_columns = pd.concat([encoded_columns, transformed_df[[variable]]], axis=1)
print(f"✔ '{variable}' encoded based on the specified order: {order}\n")
else:
print(f"⚠️ '{variable}' specified in `ordinal_map` was not found in `categorical_variables` and has been skipped.\n")
Output Results:
print(f"✔ New transformed dataframe:\n{transformed_df.head()}\n")
print(f"✔ Dataframe with only the ordinal encoded columns:\n{encoded_columns.head()}\n")
print("☻ HOW TO - To catch the df's use: `transformed_df, encoded_columns = transform_cat(your_df, your_columns, method='encode_ordinal', ordinal_map=your_ordinal_map)`.\n")
print("< SANITY CHECK >")
print(f" ➡ Original dataframe shape: {df.shape}")
print(f" ➡ Transformed dataframe shape: {transformed_df.shape}\n")
return transformed_df, encoded_columns
See the Full Function:
You can refer to the complete implementation of the transform_cat()
function, including the 'encode_ordinal'
method, on GitHub: transform_cat().
Description:
Method Functionality Idea:
The
encode_ordinal
method assigns an integer to each category value based on the provided ordinal order.How it operates:
The method encodes each variable according to the provided ordinal map, where the order of categories for each variable is specified. It converts categorical variables to ordinal integers based on the specified order.
Usage:
To use the
encode_ordinal
method:Ensure that
your_ordinal_map
is a dictionary where keys are the variable names and values are lists specifying the order of categories.Sanity Check:
A sanity check is performed to compare the shape of the original dataframe with the transformed dataframe.
Example Usage: