EasyCrypt / easycrypt

EasyCrypt: Computer-Aided Cryptographic Proofs
MIT License
320 stars 49 forks source link

application of ehoare if rule gives an error #554

Open AvishkarMahajan opened 5 months ago

AvishkarMahajan commented 5 months ago

Applying the ehoare if rule to solve a goal involving an if conditional gives an error. But proceeding via auto works fine. Run the code in the attached file to recreate the error. (anomaly..., InvalidGoalShape) ehoareEx.txt

AvishkarMahajan commented 5 months ago

(Here is the code) require import Bool Int Real Distr DInterval. require import AllCore Distr List DInterval StdOrder. require import Array. require import Xreal. import StdBigop.Bigreal. import StdBigop.Bigint.

op indFn (i j x : int) : real = if (i = j /\ x <> 1) then 1.0 else 0.0.

op geomPot (n c : int) (x : int) : real = if x <> 1 then (if n = c then 1.0 else 0.0) else (if (c <= n /\ x = 1) then 0.5 * (0.5^(n - c)) else 0.0).

lemma potIneq : forall (i c x : int), (indFn i c x)%pos <= (geomPot i c x)%pos. proof. admitted.

op hGeom (i c x : int) : real = if (x = 1 /\ c = i) then 0.0 else (if (x <> 1 /\ c = i) then 1.0 else 2.0 * geomPot i c x).

lemma hIneq : forall (i c : int), Ep [0..1] (fun (x : int) => (hGeom i c x)%xr) <= (geomPot i c 1)%xr. proof. move => i c. case (i = c). move => H. rewrite H. admitted.

module Geom = { var i : int var c : int var x : int
proc f() : unit = { while (x = 1) {x <$ [0..1]; if (x = 1) {c <- c + 1;} else {c <- c;}}}}.

ehoare geomDist : Geom.f : (Geom.c = 0 /\ Geom.x = 1) | ((0.5^(Geom.i + 1))%xr) ==> (indFn Geom.i (Geom.c) Geom.x)%xr. proof. proc. while (((geomPot Geom.i Geom.c Geom.x))%xr). progress. case (Geom.x{hr} = 1). smt. smt. seq 1 : (((hGeom Geom.i Geom.c Geom.x))%xr). rnd. skip. progress. simplify. case (Geom.x{hr} = 1). simplify. move => H. rewrite H. apply hIneq. smt. if. ( error )

(* instead of if continuing the proof this way works:

auto. smt. skip. progress. case (Geom.c{hr} = 0). case (Geom.x{hr} = 1). move => H. move => H'. rewrite H. rewrite H'. simplify. smt. smt. smt. qed.*)