Open VSustarAA opened 4 years ago
Hi, I'm currently having the same issue while running model_main_tf2.py from object detection API, did you solve this issue?
Ok, so apparently, posting a question about your problem helps :) The problem was tensorflow wanted to allocate all GPU memory at once (didnt have this issue with lower power GPUs GeForce GTX 1060 Ti m), so when launching a script, add right after importing tensorflow this piece of code, which tell tf to allocate memory gradually
This is my first comment on GitHub, so I'm sorry for bad code formatting, don't know what's going on. but hopefully, you can understand those pieces of python code :)
import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(gpus[0], True)
this works when you have single GPU, when you use more of them, you have to iterate over them and set it individually as:
import tensorflow as tf for gpu in tf.config.experimental.list_physical_devices('GPU'): tf.config.experimental.set_memory_growth(gpu, True)
Hello everyone I have installed all the dependencies with tensorflow_gpu 1.5 and cuda 9.0 following the instructions (on Win10) and I have NVIDIA RTX 2060 6Gb
When I am running object_detection_tutorial.py in the last cell I get the error message: Blas SGEMM launch failed
I suspect it might be due to too little RAM on my graphics card. I´ve read one can change the amount of used memory via: " gpu_options = tf.GPUOptions(allow_growth=True) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3) with tf.Session(graph=detection_graph, config=tf.ConfigProto(gpu_options=gpu_options,allow_soft_placement=True, log_device_placement=True)) as sess:" but I am not sure I´ve put it to the right place - it does not have any effect
I was able to make mask r cnn and yolact work on my ubuntu boot....
Would anyone know how to solve the issue?
Here´s the error message:
####################################################################################################################################################
InternalError Traceback (most recent call last) c:\programdata\anaconda3\envs\tensorflow1\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, args) 1349 try: -> 1350 return fn(args) 1351 except errors.OpError as e:
c:\programdata\anaconda3\envs\tensorflow1\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata) 1328 feed_dict, fetch_list, target_list, -> 1329 status, run_metadata) 1330
c:\programdata\anaconda3\envs\tensorflow1\lib\site-packages\tensorflow\python\framework\errors_impl.py in exit(self, type_arg, value_arg, traceback_arg) 472 compat.as_text(c_api.TF_Message(self.status.status)), --> 473 c_api.TF_GetCode(self.status.status)) 474 # Delete the underlying status object from memory otherwise it stays alive
InternalError: Blas SGEMM launch failed : m=22500, n=64, k=32 [[Node: FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_1_pointwise/BatchNorm/batchnorm/mul_1 = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_1_depthwise/Relu6, FeatureExtractor/MobilenetV1/Conv2d_1_pointwise/weights/read/_98cf101)]] [[Node: Postprocessor/BatchMultiClassNonMaxSuppression/map/while/MultiClassNonMaxSuppression/ClipToWindow_82/Gather/Gather_2/_509 = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_5277_Postprocessor/BatchMultiClassNonMaxSuppression/map/while/MultiClassNonMaxSuppression/ClipToWindow_82/Gather/Gather_2", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
During handling of the above exception, another exception occurred:
InternalError Traceback (most recent call last)