import pandas as pd
import numpy as np
# Copy the original dataframe
# load the dataset
# df = pd.read_csv('', sep='\t')
new_df = df.copy()
# Define function to remove outliers using z-score
def remove_outliers_zscore(dataframe, columns_to_exclude):
# Exclude class column from outlier removal
columns = [col for col in dataframe.columns if col not in columns_to_exclude]
# Iterate over columns
for col in columns:
# Calculate z-score for each value in the column
zscores = (dataframe[col] - dataframe[col].mean()) / dataframe[col].std()
# Remove outliers with a z-score greater than 3
new_df = new_df.loc[np.abs(zscores) <= 3]
return new_df
# Exclude 'class' column from outlier removal
columns_to_exclude = ['class']
# Remove outliers using the z-score method
new_df = remove_outliers_zscore(new_df, columns_to_exclude)
# Fill missing values with column mean, excluding 'class' column
new_df = new_df.fillna(new_df.mean())
# Save modified dataset as 'new_df.tsv'
new_df.to_csv('new_df.tsv', sep='\t', index=False)
{ "_id" : ObjectId("6504bb19b35176073e789ae1"), "src_code" : "# To remove outliers using the z-score method and fill in missing values with the average method, we can use pandas and numpy libraries. Here's the code to perform these operations on the dataframe 'df' and save the modified dataset as 'new_df.tsv':\n# \nimport pandas as pd\nimport numpy as np\n# Copy the original dataframe\nnew_df = df.copy()\n# Define function to remove outliers using z-score\ndef remove_outliers_zscore(dataframe, columns_to_exclude):\n # Exclude class column from outlier removal\n columns = [col for col in dataframe.columns if col not in columns_to_exclude]\n # Iterate over columns\n for col in columns:\n # Calculate z-score for each value in the column\n zscores = (dataframe[col] - dataframe[col].mean()) / dataframe[col].std()\n # Remove outliers with a z-score greater than 3\n new_df = new_df.loc[np.abs(zscores) <= 3]\n return new_df\n# Exclude 'class' column from outlier removal\ncolumns_to_exclude = ['class']\n# Remove outliers using the z-score method\nnew_df = remove_outliers_zscore(new_df, columns_to_exclude)\n# Fill missing values with column mean, excluding 'class' column\nnew_df = new_df.fillna(new_df.mean())\n# Save modified dataset as 'new_df.tsv'[nnew_df.to](http://nnew_df.to/)_csv('new_df.tsv', sep='\t', index=False)\n# \n# This code first copies the original dataframe into a new dataframe called 'new_df'. Then, it defines a function to remove outliers using the z-score method, excluding the columns specified in 'columns_to_exclude'. The function iterates over each column, calculates the z-score for each value, and removes outliers with a z-score greater than 3. After that, the code removes outliers from 'new_df' using the defined function.\n# \n# Next, the code fills missing values in 'new_df' with the column mean, excluding the 'class' column. Finally, the modified dataframe is saved as 'new_df.tsv' using the to_csv function from pandas.\n# \n# Please note that you need to have the pandas and numpy libraries installed to run this code. Let me know if you need any further assistance!", "status" : "error", "result" : "local variable 'new_df' referenced before assignment", "files" : [ ], "_dataset_id" : ObjectId("6504a548ebd140004a90ed60"), "_experiment_id" : ObjectId("6504a54bebd140004a90ed61"), "_dataset_file_id" : ObjectId("6504a546ebd140004a90ed5e"), "__v" : 0 }
{ "_id" : ObjectId("6504bb19b35176073e789ae1"), "src_code" : "# To remove outliers using the z-score method and fill in missing values with the average method, we can use pandas and numpy libraries. Here's the code to perform these operations on the dataframe 'df' and save the modified dataset as 'new_df.tsv':\n# \nimport pandas as pd\nimport numpy as np\n# Copy the original dataframe\nnew_df = df.copy()\n# Define function to remove outliers using z-score\ndef remove_outliers_zscore(dataframe, columns_to_exclude):\n # Exclude class column from outlier removal\n columns = [col for col in dataframe.columns if col not in columns_to_exclude]\n # Iterate over columns\n for col in columns:\n # Calculate z-score for each value in the column\n zscores = (dataframe[col] - dataframe[col].mean()) / dataframe[col].std()\n # Remove outliers with a z-score greater than 3\n new_df = new_df.loc[np.abs(zscores) <= 3]\n return new_df\n# Exclude 'class' column from outlier removal\ncolumns_to_exclude = ['class']\n# Remove outliers using the z-score method\nnew_df = remove_outliers_zscore(new_df, columns_to_exclude)\n# Fill missing values with column mean, excluding 'class' column\nnew_df = new_df.fillna(new_df.mean())\n# Save modified dataset as 'new_df.tsv'[nnew_df.to](http://nnew_df.to/)_csv('new_df.tsv', sep='\t', index=False)\n# \n# This code first copies the original dataframe into a new dataframe called 'new_df'. Then, it defines a function to remove outliers using the z-score method, excluding the columns specified in 'columns_to_exclude'. The function iterates over each column, calculates the z-score for each value, and removes outliers with a z-score greater than 3. After that, the code removes outliers from 'new_df' using the defined function.\n# \n# Next, the code fills missing values in 'new_df' with the column mean, excluding the 'class' column. Finally, the modified dataframe is saved as 'new_df.tsv' using the
to_csv
function from pandas.\n# \n# Please note that you need to have the pandas and numpy libraries installed to run this code. Let me know if you need any further assistance!", "status" : "error", "result" : "local variable 'new_df' referenced before assignment", "files" : [ ], "_dataset_id" : ObjectId("6504a548ebd140004a90ed60"), "_experiment_id" : ObjectId("6504a54bebd140004a90ed61"), "_dataset_file_id" : ObjectId("6504a546ebd140004a90ed5e"), "__v" : 0 }